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ABSTRACT 
 

Computational models have been developed to investigate the thermal and mechanical 

behavior of the solidifying steel shell in continuous casting funnel molds, with the goal of 

understanding the effect of funnel shape on the solidifying steel shell.  The numerical models 

have been calibrated with plant measurements from the Corus Direct Sheet Plant in IJmuiden, 

The Netherlands, and are used to recommend funnel designs and narrow-face taper practices.  

The steady-state temperature distribution in the mold is calculated in three-dimensions, and then 

used to calibrate and validate a simpler one-dimensional model of mold heat transfer.  The 

results are applied to explain the effect of mold wear on the measured mold temperatures and 

heat fluxes.  Investigation of the mechanical behavior of the solidifying shell has identified the 

geometry of the funnel has little influence on the thermal behavior of the solidifying shell, but 

induces a bending effect in the shell that is absent in conventional parallel-face molds.  This 

bending effect is shown to increase the likelihood of crack formation in the “inside curve” region 

of the funnel, due to increased tensile stress on the solidification front.  This mechanical effect 

can be mitigated by using a shallow and wide funnel with no inner flat region.  Naturally, this 

finding needs to be balanced with the original purpose of the funnel, to allow room for the 

submerged entry nozzle, and with other crack mechanisms in order to find the optimal funnel-

shape design. 
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PRINCIPAL NOMENCLATURE 

 

 Symbols used in this work include both upper- and lower-case Roman and Greek letters.  

Subscripts and superscripts include letters, Arabic numerals, and typographical glyphs. Scalars 

are represented by italicized symbols, a .  Thermodynamic variables such as enthalpy are 

discussed in terms of “total” quantities with capital letters H , and in terms of “specific” 

quantities (i.e., per unit mass) with small letters h .  Two- and three-dimensional vectors are 

represented by boldface, italicized, lower-case Roman letters, a , and n -dimensional vectors 

such as those used in numerical models are symbols within braces (curly brackets) { }a .  Second-

order tensors are represented with boldface, italicized, upper-case Roman letters and lower-case 

Greek letters, A  and α .  Fourth-order tensors are represented with boldface upper-case Roman 

letters, A .  Matrices, including the matrix representation of the components of tensors, are 

symbols within brackets (square brackets), [ ]A .  Unless specifically mentioned otherwise, the 

meter-kilogram-second-ºC unit system is adopted in this work. 

 

Symbol Description 

1a , 2a  Parameters in thermal conductivity model 

ib  Bézier curve control points, 1, 2,3,4i =  

cb  Bézier curve vector 

C  Right Cauchy-Green strain tensor (second-order) 
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Tc  Funnel crown at mold top 

pc  Constant-pressure specific heat capacity 

D Rate-of-deformation tensor (second-order) 

E  Elastic (Young’s) modulus 

F  Deformation gradient tensor (second-order) 

if  Mass fraction of phase i  

g  Acceleration due to gravity 
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ig  Volume fraction of phase i  

iH  ih  Total, specific enthalpy of phase i  

fH  Enthalpy of formation (latent heat of fusion) 

I , I  Second- and fourth-order identity tensors 

K  Thermal conductivity tensor (second-order) 

K  Bulk modulus 

ik  Thermal conductivity of phase i  

f  Funnel length 

m  Mold length 

n  Outward-pointing surface normal vector 

Q  Activation energy 
q  Heat flux vector 

R  Rotation tensor (second order) 

hr  Horizontal plane funnel radius 

vr  Vertical plane funnel radius 

s  Mold surface position 

T  Temperature 

0T  Initial temperature 

liqT  Liquidus temperature 

refT  Reference temperature 

solT  Solidus temperature 

t  Surface traction vector 

t  Time 

0t  Reference time 

dt  Dwell time of shell in mold 

st  Slab/strand half-thickness 

U  Right stretch tensor (second-order) 

u  Displacement vector 

V  Left stretch tensor (second-order) 

V  Volume 

CV  Casting speed 

fV  Funnel volume 
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iw  Inner funnel half-width 

mw  Middle funnel half-width 

ow  Outer funnel half-width 

sw  Slab/strand half-width 

x , y , z  Spatial coordinates 

tz  Location of upper tangent point 

Eα  Coefficient of thermal expansion 

Tα  Thermal diffusivity 

β  Bézier curve parameter 

yΔ , zΔ  Distance between tangent points on linear funnel 

δ  Shell thickness 

NFδ  Narrow face taper as a raw length 

ε , ijε  Linearized total strain tensor, component ij  (second-order) 

elε , el
ijε  Elastic strain tensor, component ij  (second-order) 

ieε , ie
ijε  Inelastic strain tensor, component ij  (second-order) 

thε , th
ijε  Thermal strain tensor, component ij  (second-order) 
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ieε  Equivalent inelastic strain rate 
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μ  Lamé’s second elastic constant (shear modulus) 

ν  Poisson’s ratio 
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σ , ijσ  Cauchy stress tensor, component ij  (second-order) 

′σ  Deviatoric Cauchy stress tensor (second-order) 

σ  Equivalent stress 
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 Various mathematical operators are used in this work.  Standard conventions are adopted, 

and are summarized here.  The operators that are defined for second-order tensors have direct 

analogues for higher-order tensors and use the same symbols.  All coordinate systems considered 

in this work are orthonormal, and specifically rectangular/Cartesian, so there is no need to track 

the covariance and contravariance of the gradient operator.  Matrix operators use the same 

symbols as the tensor operators for the analogous operations (inverse, transpose, determinant).   

 

Operator Meaning 

a , a , A  First time derivative of variable 

a , a , A  Second time derivative of variable 

a∇ , ∇a  Gradient of scalar field a  or vector field a  

∇⋅a , ∇⋅ A  Divergence of vector field a  or tensor field A  

∇×a , ×∇a  Curl, conjugate curl of vector field a  

⋅a b  Inner (dot, scalar) product of vectors a  and b  

×a b  Cross product of vectors a  and b  

⋅A a , ⋅A B  Tensor A  operating from the left on vector a  or tensor B  

⋅a A , ⋅B A  Tensor A  operating from the right on vector a  or tensor B  

⊗a b , ⊗A B  Outer (dyad, tensor) product of vectors a  and b  or tensors A  and B  

:A B  Contraction (scalar product) of tensors A  and B  
1−A  Inverse of tensor A   

TA  Transpose of tensor A  

( )det A  Determinant (third invariant) of tensor A  

( )tr A  Trace (first invariant) of tensor A  

 

 

 Several acronyms are used throughout this work for the sake of both brevity and 

convention, and are summarized here. 

 

Acronym Meaning 

2D Two-dimensional 

3D Three-dimensional 

BTZ Brittle Temperature Zone 

DSP Direct Sheet Plant 
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IC Inner Curve 

IF Inner Flat 

LFC Longitudinal Facial Crack 

NF Narrow Face 
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OF Outer Flat 

SEN Submerged Entry Nozzle 

TC Thermocouple 

WF Wide Face 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Background 

Steel is, both literally and figuratively, the foundation of the modern industrialized world.  

The use of steel has allowed for the construction of taller buildings, longer bridges, stronger 

tools, and many other structures and mechanisms that outperform the previous generation.  Steel 

has one of the lowest cost-to-strength ratios relative to other materials, and so has become 

ubiquitous in the modern world; steel is found in everything from kitchen utensils to heavy 

earthmoving equipment.  At some points and places in history, such as the settling of the North 

American frontier, steel has been more valuable than precious metals like gold because of its 

durability in tools such as plows and axes. 

The vast majority of steel produced in the world today is done so through a process called 

continuous casting.  Continuous casting, as its name suggests, is a continuous process capable of 

high production volumes, especially compared to previous batch-based ingot casting.  

Continuous casting has been responsible for over 90% of the world steel production for several 

years, which has been in excess of one billion metric tons since the year 2004 [3,4].  The process 

of continuous casting has its origins with Henry Bessemer some 140 years ago [2], but did not 

become a major industrial process until the middle of the 20th century with the need for a large 

amount of steel for second world war and the reconstruction of the European nations, Russia, and 

Japan in its aftermath.  Continuous casting has been evolving since then because of both 

industrial experience and applied scientific research, but the steel producers and consumers will 

never cease the demand for a higher volume of product with fewer defects at lower prices. 

 

1.2. Overview of Continuous Casting Process 

The important aspects of the continuous casting process are shown in Figure 1.1 [7].  

Fluid flow in continuous casting is a gravity-driven process, as few if any pumps can withstand 

the temperatures at which steel is a liquid.  The refined liquid steel from the steelmaking process 

continues its journey in a large refractory-lined ladle, which is placed above the casting machine.  

The bottom of the ladle is opened and the steel drains out into a large reservoir called a tundish.  

While also serving as a refining vessel under optimal conditions, the main purpose of the tundish 
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is to act as a buffer between ladle changes so that the process can continue without interruption.  

The steel next flows out of the tundish though a refractory submerged entry nozzle (SEN) into a 

bottomless, water-cooled, oscillating copper mold.  Either a stopper rod within the tundish or a 

slide-gate mechanism within the SEN regulates the flow of molten steel out of the tundish. 

 

Figure 1.1. Schematic of Continuous Casting Process 
 

The steel freezes soon after initial contact with the mold walls, forming a thin shell of 

material that is withdrawn continuously at the same rate at which it solidifies, called the casting 

speed.  Upon exiting the mold, the steel travels through a region known as secondary cooling, 

which generally consists of several banks of nozzles that spray water against the shell between 
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the supporting (and driving) rolls that guide the steel strand from a vertical to a horizontal 

configuration.  Once the steel strand is completely solidified, a torch or shear cuts the steel strand 

into separate slabs of a desired length, and then the section of steel continues downstream to 

further processing, such as hot-rolling, coiling, or whatever processes are required for the final 

product.  Focusing on the section of the process upstream from the cutoff point, steady state 

conditions (relative to a stationary observer) are eventually obtained and the process normally 

continues for extended periods of time. 

Continuous casting is capable of producing a wide variety of steel grades and shapes, 

from thick or thin slabs to billets and even near-final shapes such as wide-flanged beams.  Each 

shape and grade present their own unique issues to the continuous casting process, but all 

possible combinations share the worries of defects or worse, a breakout.  A breakout is the 

failure mechanism that occurs when the steel shell tears open in the secondary cooling zone 

(though the breakout-initiating problem need not start there), spilling molten steel over the spray 

nozzles, support rolls, and plant floor.  A single breakout can cost steel producers on the order of 

one million dollars between lost product, damaged equipment, and down time in the plant. 

Thin sheet steel has many uses, including automobile bodies, pipelines, and food cans.  

Conventional slab casting produces slabs around 250 mm thick at a rate of about 1.4 m/min, and 

several rolling operations are needed to reduce this section size to the around 3-7 mm thickness 

needed for thin sheet steels.  The advent of thin-slab casting in the late 1980s at Nucor’s 

Crawfordsville, Indiana plant with the Compact Strip Production (CSP) mold [5] was the first 

step in greatly reducing the number of costly rolling operations needed to make thin products.  

Thin-slab casting produces slabs with thicknesses ranging from 50-100 mm with casting speeds 

around 5 m/min, and in order to have equal throughput as the conventional process, producers 

are trying to increase casting speeds to 8 m/min.  The main issue that arises in decreasing the 

mold thickness is that the SEN will no longer fit between the mold plates.  As shown in Figures 

1.2 and 1.3, mold designers solve this problem by using elliptical (rather than circular) SENs and 

by introducing a gentle funnel shape into the mold, so that the strand thickness is large at the top 

of the mold and tapers down into the nominal thickness, hence the term “funnel-shaped mold,” 

or more succinctly, “funnel mold.” 

 



 

  4

Figure 1.2. Schematic of Conventional Slab Casting Mold
 

Figure 1.3. Schematic of a Thin-Slab Casting Funnel Mold 
 

1.3. Objectives and Methodology of Current Work 

The designs of funnel molds have evolved over the years, based mostly on expensive 

trial-and-error processes in steel plants.  This work aims to lay the groundwork for optimizing 

funnel mold design for thin-slab continuous casting of steel, based on development and 

application of a computational model to obtain a fundamental understanding of the effects of the 
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funnel on the solidifying steel shell, especially with regards to shell cracking and breakouts.  

Thus, another objective is to understand the various mechanisms of cracking, in funnel molds, 

which have gone largely unstudied since the inception of the funnel mold.  This requires a 

fundamental understanding of the mechanical behavior of the shell, which in turn needs a 

quantitative understanding of the heat transfer in both the mold and the shell. 

Various modeling techniques are applied to the mold and the shell to qualitatively and 

quantitatively investigate this phenomenon of longitudinal facial cracking.  After discussing the 

geometry of funnel molds, this work will cover the development and application of the 

mathematical models.  Firstly, the thermal behavior of the mold and shell will be investigated, 

first using CON1D [6], a one-dimensional numerical model of the continuous casting process.  

Next, the thermal-mechanical behavior of the shell will be investigated with analytical models, 

as well as using ABAQUS [1], a commercial general-purpose finite-element code.  The results of 

the coupled thermo-mechanical numerical models will then be used to evaluate the cracking 

potential in the shell.  The models will be validated as much as possible with a database of plant 

measurements from the Corus Steel Direct Sheet Plant (DSP) in IJmuiden, The Netherlands.  

They will then be applied to investigate the behavior of the solidifying shell, focusing on the 

effect of funnel design.  Finally, this work will suggest a better design for funnel molds. 

 

1.4. References 

1. ABAQUS 6.9 User Manuals, (2009), Simulia Inc., 166 Valley St, Providence, Rhode Island, 
USA, 02909. 

2. H. Bessemer, “Improvement in the Manufacture of Iron and Steel.” United States of America 
Patent, Number 49,053. 25 July 1865. 
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Website, http://www.worldsteel.org/?action=storypages&id=197#, visited 24 February 2008. 
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http://www.worldsteel.org/?action=stats&type=steel&period=latest&month=13&year=2006, 
visited 24 February 2008. 

5. H. Malinowski, “First CSP Production Plant at Nucor Steel.” Steel Times, 217:11 (1989), pg. 
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6. Y. Meng and B.G. Thomas, “Heat Transfer and Solidification Model of Continuous Slab 
Casting: CON1D.” Metallurgical and Materials Transactions, 34B:5 (2003), pg. 707-725. 

7. B.G. Thomas, “Introduction to Continuous Casting.” Website, 
http://ccc.mechse.uiuc.edu/introduction/concast.html, visited 24 February 2008. 
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CHAPTER 2 
 

MOLD GEOMETRY 
 

2.1. Introduction 

 Funnel molds, as the name suggests, differ from conventional mold shapes with the 

introduction of a funnel into the hot face of the wide faces.  All other things being equal, the 

geometry is then the only difference between conventional slab molds and funnel molds.  In 

order to understand the effect of the funnel geometry on the mold and on the solidifying shell, 

the geometry must first be understood and represented in a format that is compatible with the 

other models employed in this work.  This exercise allows for easy and systematic mesh 

generation in numerical models as well as the development of various analytical models. 

 One of the issues that arises in decreasing the thickness of the cast product is that the 

submerged entry nozzle (SEN) no longer fits between the mold plates.  One way around this 

problem is to use an SEN that has an ellipsoidal cross-section, rather than the traditional circular 

shape.  Another method is to introduce a funnel shape into the mold, so that the strand thickness 

is larger at the top of the mold and tapers down to the nominal strand dimensions.  Both 

approaches satisfy the design goal of creating space for the SEN; however, a well-designed 

funnel will seek to maximize the space for the nozzle, to reduce fluid-flow related defects, while 

minimizing the induced mechanical effects in the steel shell that are otherwise absent without the 

funnel, as explained in Chapter 5. 

 A review of the American patents reveals several ideas for funnel molds that the steel 

industry has produced.  Flick et al. [2] proposed a funnel mold design with non-parallel “outer 

flat” regions (see below for description).  To promote uniform heat transfer in the mold, 

Pleschiutschnigg proposed using copper mold plates of constant thickness with a funnel shape 

introduced into the water box [5].  Grove and Sears [3] suggest changing the depth of the cooling 

water channels from the hot face of the funnel to offset funnel curvature effects and create a 

uniform hot face temperature.  Struebel [6] and Fehlemann and Struebel [1] promote the idea of 

changing the water channel size to locally change the velocity of the water channels by adding 

extra copper to the hot side or cold side of the water channels.  This has been implemented 

practice by retrofitting molds with “accelerator plates” inserted into existing channels to increase 

local water velocity.  Most relevant to the work at hand, Sucker and Capotosti [7] patented a 
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variety of funnel shapes, including those outlined in this chapter with the claim of reducing 

defects in the solidifying steel shell.  Pleschiutschnigg [4] proposed using different funnel shapes 

on the inner and outer casting radius, and also tapering the funnel region away from the narrow 

faces with increasing distance down the mold.  However, the utility of these various designs has 

not been demonstrated, so this work aims to gain a fundamental and quantitative understanding 

of the effects of the different geometric features on the thermal-mechanical behavior of the 

solidifying shell and the possible formation of longitudinal cracks. 

 

2.2. Wide Faces 

2.2.1. Horizontal Plane 

 First, consider the horizontal plane of the funnel, i.e. the plane perpendicular to the 

casting direction.  The fundamental features of the funnel shape in this plane are the “inner 

funnel width,” the “outer funnel width,” and the “crown.”  These three features are sufficient to 

define completely the geometry in the horizontal plane of the funnel, and are all independent of 

the shape of the funnel in the vertical plane.  Some molds used in practice such as the CSP mold 

have zero inner funnel width; this is a special case of the geometry presented here.  Other 

features of interest include the “strand width” and the “strand thickness,” although these features 

are not unique to funnel molds.  Figure 2.1 illustrates the geometric features of a funnel mold. 

 Funnel molds typically have two planes of symmetry, one through the center of the wide 

faces and one through the center of the narrow faces.  The intersection of these planes suggests a 

natural coordinate system for the mold, as shown in Figure 2.2, with the positive z-axis pointing 

along the casting direction (“into the page”).  Consider in this work the quadrant in the horizontal 

plane bounded by the positive x- and y- axes. 

Figure 2.2 defines the symbolic funnel dimensions: iw  is half of the inner funnel width, 

ow  is half of the outer funnel width, sw  is half of the strand width, c  is the crown of one wide 

face, and st  is half of the strand width in regions away from the funnel.  Note that a physically 

admissible description of the mold surface requires 0 i o sw w w≤ < < .  The hot face surface of the 

mold, ( ),s x z ,  is described as a function of these geometric features in the provided coordinate 

system by applying some basic principles of Euclidean geometry. 
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Figure 2.1. Horizontal Plane Funnel Geometry Features (Top View) 
 

Figure 2.2. Horizontal Plane Funnel Geometry Variables 
 

Some additional terminology is helpful when discussing the funnel geometry.  The 

physical features mentioned earlier lend to subdividing the funnel into its distinct regions.  The 

“inner flat” region, as the name suggests, is the straight segment in the center of the mold, bound 

by the inner funnel width, 0 ix w≤ ≤ .  Similarly, the “outer flat” regions are the straight 

segments in the outermost regions of the funnel, towards the narrow faces, that are bound by the 

outer funnel width and the strand width (technically the mold width, but for present purposes the 

strand width is sufficient), o sw x w≤ ≤ .  The region between the funnel widths is the “funnel 

transition” region, i ow x w≤ ≤ , which may be further divided into an “inner curve” region and an 

“outer curve” region, depending on the sign of the local radius of curvature of the surface; the 
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inner curve region has negative curvature, the outer curve region has positive curvature.  All of 

these additional features are highlighted in Figure 2.1. 

The outer flat is one half of the strand thickness away from the center of the narrow faces, 

sy t= , and the inner flat is further away by a distance equal to the crown of the mold, sy t c= + .  

In the provided coordinate system, the funnel transition is defined by a curve that connects the 

( ),x y  points ( ),i sw t c+  and ( ),o sw t .  The curve that describes the funnel transition is subject to 

additional constraints to avoid creating a damaging environment for the solidifying steel shell.  

These constraints are that the curve must be continuous, the curve must be tangent to the flat 

regions at each endpoint, the curve must be bound entirely by the intervals i ow x w≤ ≤  and 

s st y t c≤ ≤ + , and the curve must be monotonic (curvature changes signs at most once).  Note 

that there is no constraint on the symmetry (or anti-symmetry) of the curve.  Infinitely many 

curves meet all of these constraints, but here only three are discussed, the first of which is 

generally the design used in practice; two circles of equal-but-opposite radius, tangent to each 

other in the center of the funnel transition region, one-half of a sine wave, and a Bézier curve.  

These designs are shown in Figure 2.3 for the same funnel dimensions.  The different effects of 

these seemingly similar designs on the mechanical behavior of the shell will be shown later. 
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Figure 2.3. Horizontal Plane Funnel Shapes 
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2.2.1.1. Tangent Circles Design 

Consider two circles of equal-but-opposite radius, tangent to the flat sections and to each 

other in the middle of the funnel transition region, as shown in Figure 2.4.  The location of the 

middle of the funnel region is given by ( ) 2m i ow w w= + .  This physical description is sufficient 

to create a mathematical description of the curve formed by these two circles.  Firstly, the 

(horizontal) radius hr  must be determined by applying the Pythagorean Theorem according to 

Figure 2.4, and then solving for the radius: 

 

( )22 2
2

2 2 4 4
o io i

h h h

w ww w c c
r r r

c

−−   = + −  = +   ⋅    
(2.1) 

The Pythagorean Theorem similarly is employed to locate the points on the hot face in the funnel 

transition region as a function of the x -coordinate: 

 

( )
( )

( )

22

22

0

,

0

i

h h i i m

s

h h o m o

o s

c x w

c r r x w w x w
s x z t

r r w x w x w

w x w

 ≤ ≤


− + − − ≤ ≤= + 
 − − − ≤ ≤

 ≤ ≤  

(2.2) 

 

2.2.1.2. Half Sine Wave Design 

A portion of a sine wave, ( ) ( )1 2 3 4siny x c c c c x= + + , also meets the constraints for the 

funnel transition curve, granted the various constants ic  are defined correctly.  The hot face of 

the mold wide face with a half sine wave funnel transition curve is given by: 

 

( )

0

, 1 sin
2 2

0

i

i
s i o

o i

o s

c x w

x wc
s x z t w x w

w w

w x w

π π


≤ ≤




    −= + + + ≤ ≤     −     

 ≤ ≤
  

(2.3) 
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Figure 2.4. Calculation of Horizontal Radius 

 

2.2.1.3. Bézier Curve Design 

Bézier curves are parameterized cubic polynomials, commonly used in computer 

graphics.  These curves are continuous and smooth, with a few exceptions, through several 

derivatives and are easy to compute.  Consider any four points in space, with three line segments 

connecting them.  Linearly interpolating along each line segment by the same fraction of unity 

locates three points in space; now connect these three points with two new line segments.  

Linearly interpolating along these two line segments by the same fraction of unity locates two 

new points in space; connect these two points by a new line segment, and linearly interpolate 

along it by the same fraction of unity to locate a point on the Bézier curve.  This series of linear 

interpolations is known as de Casteljau’s algorithm, and is the geometric basis for the Bézier 

curve.  The equivalent mathematical expression for the Bézier curve ( )c βb  is given by: 

 ( ) ( ) ( ) ( )3 2 2 3
0 1 2 31 3 1 3 1β β β β β β β= − + − + − +b b b b b  (2.4) 

where 0 1β≤ ≤  is the parametric variable and 0b , 1b , 2b , and 3b  are the “control points” of the 

curve.  Choosing ( )0 ,i sw t c= +b , ( )1 ,m sw t c= +b , ( )2 ,m sw t=b , and ( )3 ,o sw t=b  as the ( ),x y  

control points of the Bézier curve gives an anti-symmetric funnel transition curve that meets all 

of the constraints listed above: 

hr

hr
hr  

hr

ow  

iw  

c

2
o iw w−

2h

c
r −

Apply Pythagorean Theorem to this triangle 
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 ( ) ( )[ ]
0

,

0

i

s c i o

o s

c x w

s x z t y w x w

w x w

β
≤ ≤

= + ≤ ≤
 ≤ ≤

b  (2.5) 

where the operator [ ]y  means to take the y -coordinate of the curve.  To use Equation (2.5) in an 

explicit (non-parametric) manner, the x -coordinate equation of Equation (2.4) is used to solve 

for β  in terms of x , which requires solving a cubic equation: 

 

( ) ( ) ( )

( ) ( ) ( )

3 2 2 3

3 2

1 3 1 3 1

3 3

2 2

i m m o

o i o i o i i

x w w w w

w w w w w w w

β β β β β β

β β β

= − + − + − +

= − − − + − +
 

(2.6) 

Cubic equations have three real roots or one real root and two complex roots; so long as x  is 

bound inclusively by iw  and ow , the principal real root of this equation is given by: 

 
( ) ( )

1

2 2 2
i o

i o

w w
x

w w

ψβ
ψ
−= − +

−  
(2.7) 

where ψ  is given by: 

 
( ) ( ) ( )( ) ( )2 2

3 2 4 5 16i o i o i o i ow w x w w x w x w w wψ  = + − + − + − − −    
(2.8) 

This result is substituted into the y -coordinate equation of Equation (2.4), which is then used to 

define the mold surface: 

 

( ) ( ) ( ) ( ) ( ) ( )
( )

3 2 2 3

3 2

1 3 1 3 1

2 3 1

s s s s

s

y x t c t c t t

c t

β β β β β β

β β

= − + + − + + − +

= − + +
 

(2.9) 

 

2.2.2. Vertical Plane 

Each of the above funnel designs for the horizontal plane are defined in terms of the 

crown of the funnel, among other dimensions.  Often, the funnel widths are constant in practice, 

though this is not required by the above equations.  Usually, only the crown changes with 

position down the mold, so it is necessary to define it in terms of the geometric features of the 

mold.  Where the crown becomes zero, the horizontal shape of the mold becomes a straight line 

(parallel mold walls).  Figure 2.5 shows the vertical plane using three physical features to define 

the funnel: Tc  is the crown at the top of the mold, Bc  is the crown at the bottom of the mold, and 
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f  is the “funnel length.”  The funnel length is the distance below the top of the mold that the 

crown changes from a curve to a straight line.  Another feature of interest is the “mold length,” 

m , which is not unique to funnel molds.  The “upper mold”  region contains the tapering part of 

the funnel, 0 fz≤ ≤  , while the “lower mold” is vertically straight, though a crown may still be 

present, f mz≤ ≤  .  A physically admissible mold is constrained to have 0 f m≤ <   and 

0 B Tc c≤ < . 

 

Figure 2.5. Vertical Plane Funnel Geometry Variables (Centerline Slice of Wide Face) 
 

Similar to the horizontal plane, the curve that defines the crown in the vertical plane is 

constrained so that the curve must be continuous; the curve must be tangent to the line segment 

that defines the lower part of the mold; the curve must be bound entirely by s B s Tt c y t c+ ≤ ≤ +  

and by 0 fz≤ ≤   (with one exception, discussed shortly); and the curve must be monotonic, 

though preferably the local radius of curvature does not change sign at all.  The curve connects 
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the two ( ),y z  points ( ),0s Tt c+  and ( ),s B ft c+  .  Again, infinitely many curves meet these 

constraints, but only three are discussed here; the “curved funnel,” the “linear funnel,” and a 

Bézier curve. 

  

2.2.2.1. Curved Funnel 

The curved funnel consists of an arc that is tangent to the lower mold at the funnel length 

and sweeps upward.  The (vertical) radius in this case is calculated according to the other 

geometric features by applying the Pythagorean Theorem in a manner similar to the tangent 

circles case in the horizontal plane. 

 ( )
2

2 2
fT B

v
T B

c c
r

c c

−= +
⋅ −


 
(2.10) 

The curve that describes the crown is then given by: 

 

( )
( )22 0

0

v v f f

B

f m

r r z z
c z c

z

 − − − ≤ ≤= + 
 ≤ ≤

 

 
 

(2.11) 

 

2.2.2.2. Linear Funnel 

The linear funnel consists of a straight line from the top of the mold to a point somewhere 

near the funnel length; in this case a vertical blending radius is specified so that the “corner” of 

the line segments is smoothed out and the curve is tangent to both the upper and the lower mold.  

In this case, the funnel length is slightly longer than the nominal value.  The tangent points are 

located by creating a system of equations after applying the Pythagorean Theorem and the Law 

of Similar Triangles to the geometry, yielding the Cartesian components of the distance between 

the tangent points yΔ  and zΔ : 

 

( )
( ) ( )( )2 2,0 ,

v f
y v

m f

r
x r

s x s x

⋅
Δ = −

− +



 
 

(2.12a) 

 

( ) ( ) ( )( )
( ) ( )( )2 2

,0 ,

,0 ,

m v
z

m f

s x s x r
x

s x s x

− ⋅
Δ =

− +



 
 

(2.12b) 
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where ( ),0s x  is the funnel surface function evaluated at 0z =  ( Tc c= ) for any x -coordinate 

and ( ), ms x   is the same function evaluated at mz =   ( Bc c= ).  Note that the tangent points are 

not equal for different points in the funnel transition region.  Applying the Law of Similar 

Triangles again yields the location of the (upper) tangent point tz  on the curve that describes the 

crown: 

 

( ) ( )( ) ( ) ( )
( )

,0 , m y v y

t
z

s x s x x r x
z

x

   − −Δ −Δ  =
Δ



 
(2.13) 

The curve that describes the crown is then given by: 

 

( )

( )

( )22

1 0

0

T B t
f

B v v t z t t z

t z m

z
c c z z

c z c r r z z z z z

z z

  
− − ≤ ≤     


= + − − + Δ − ≤ ≤ + Δ


 + Δ ≤ ≤





 

(2.14) 

 

2.2.2.3. Bézier-Curve Funnel 

The third case is a Bézier curve in the vertical plane, which when combined with a Bézier 

curve in the horizontal plane forms what is called a Bézier surface.  In general, the description of 

the curve is identical to that of the Bézier curve in the horizontal plane, using ( ),y z  control 

points ( )0 ,0Tc=b , ( )( )1 ,B T B fc c cφ η= + ⋅ − ⋅b  , ( )2 ,B fc γ= ⋅b  , and ( )3 ,B fc=b  .  0 1φ≤ ≤  is 

a parameter that locates the y -coordinate of the top control point, 0 η γ≤ ≤  is a parameter that 

locates the z -coordinate of the top control point, and 1η γ≤ ≤  is a parameter that locates the z -

coordinate of the bottom control point.  The curve that describes the funnel crown is given by: 

 
( ) ( )[ ] 0c f

B f m

y z
c z

c z

β ≤ ≤=  ≤ ≤

b 
 

 

(2.15) 

Again, the z -coordinate equation is used to solve explicitly for β : 

 

( ) ( ) ( )
( ) ( )

3 2 2 3

3 2

1 0 3 1 3 1

1 3 3 3 2 3

f f f

f f f

z β β β η β β γ β

η γ β γ η β η β

= − + − + − +

= + − + − +

  

  
 

(2.16) 
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This cubic equation is more difficult to solve than the horizontal plane Bézier curve, so a 

numerical solution is recommended, choosing the real root that gives 0 1β≤ ≤ , and then proceed 

to substitute β  into the y -coordinate equation of Equation (2.15), which then gives the crown 

curve: 

 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

3 2 2 3

3 2

1 3 1 3 1

3 1 3 1 2 3 1

T B T B B B

T T B

y z c c c c c c

c c c

β β β φ β β β

φ β φ β φ β

= − + − + − + − +

 = + − + − + − −   

(2.17) 

 

2.3. Narrow Faces 

The main feature to describe on the narrow faces is the taper that is applied to the mold 

pieces to ensure that the shell and mold remain in good contact, accounting for solidification 

shrinkage.  Tapers used in practice are usually linear, bilinear, or parabolic, which are simple to 

describe mathematically.  However, definitions of taper vary from plant to plant, so only the 

linear case is presented here.  Given a difference in narrow face mold position from top to 

bottom NFδ , and assuming the strand width is defined at the bottom of the mold, the Law of 

Similar Triangles gives an expression for the hot face of the narrow faces: 

 
( ), 1s NF

m

z
s y z w δ

 
= + − 

   
(2.18) 

This is the most general way of defining linear narrow face taper; it is up to the user to calculate 

NFδ  correctly according to plant practice. 

 

2.4. Funnel Volume 

Another aspect of funnel design is the cost of machining a mold.  Modern milling 

machines are capable of handling reasonably complicated geometries, so the remaining 

difference in machining cost is the volume of scrap that ends up on the shop floor, after both the 

initial machining and any subsequent machining that is performed as the mold is used and wears 

from the sliding contact with the steel shell.  The above equations describing the geometry can 

be integrated to calculate the volume of copper fV  that must be removed to machine (initially) a 

given design, and allow another way to compare funnel designs: 

 
( )( )

0 0
,

m sw

f sV s x z t dxdz= − 


 
(2.19) 
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When the crown curve is not a function of the x -coordinate (the linear funnel, for which a 

numerical integration would be much simpler), the above-described geometries are anti-

symmetric curves and the x -direction integral is very simply ( )( )2 i oc w w+ , and all that 

remains is to integrate the crown curve with this additional constant.  For the radiused funnel, the 

volume of the funnel region is given by: 

 

2 2 2

2 2
arctan

2 2 2
v f fi o v

f B m f v

v f

rw w r
V c r

r

    − −+     = + − +
    −    

 
 


 

(2.20) 

Though the Bézier-curve funnel (in the vertical plane) describes a crown that is independent of 

the x -coordinate, the integrals quickly become analytically intractable, and a numerical 

integration method should be applied. 

 

2.5. Present Work 

 This work considers funnel shapes with “tangent circles” design in the horizontal plane, 

with either the “curved” or “linear” funnel design in the vertical plane.  For the curved funnel 

design, the geometry is completely specified by providing the inner funnel width iw , the outer 

funnel width ow , the mold length m , the funnel length f , and the crowns at the top and bottom 

of the mold Tc  and Bc .  The geometry for the linear funnel design requires these same 

dimensions in addition to the blending radius in the vertical plane vr .   

 The different funnel shapes analyzed in this work are labeled simply “A,” (curved) “B,” 

(linear) and “C,” (curved).  These three funnels will be the base cases for most of the studies 

done in this work.  In addition, the geometric parameters have been systematically varied to 

understand their effects on funnel mold design.  The geometric parameters are summarized in 

Table 2.1 and Figures 2.6, 2.7, and 2.8.  All cases have mold length m  = 1100 mm and funnel 

length f  = 850mm.  From these parameters, the vertical radius of the A-type or C-type molds, 

vr , is calculated with Equation (2.10), which is then used to calculate the crown, ( )c z , at any 

position below the top of the mold with Equation (2.11).  Once the crown is known, the size of 

the horizontal funnel radius, hr , is calculated with Equation (2.1).  Finally, the position of the hot 

face, ( ),s x z , can be calculated anywhere across and down the mold surface with Equation (2.2) 
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for the “tangent circles” funnel design.  The same procedure is used for the B-type mold, except 

that the vertical radius is specified and used to calculate the tangency adjustments yΔ  and zΔ  in 

Equations (2.12), allowing the position of the tangent point to be calculated with Equation (2.13).  

The crown for the linear funnel is then specified at any point below the top of the mold according 

to Equation (2.14), and then the horizontal radius and hot face position can be calculated as 

described above. 

 

Table 2.1. Summary of Funnel Geometries Used in this Work 

Label Design 
Funnel Geometry (mm) 

f  m  iw  0w  Tc  Bc  
vr  ( )0hr z =  ( )h mr z =   

A Curved 850 1100 130 375 23.4 8 23465 647.14 1877.8 
B Linear 850 1100 130 475 30 0 2500 999.4 ∞ 

C Curved 850 1100 0 475 30 0 12057 1887.7 ∞ 
 

 

 

Figure 2.6. Geometry of Funnel Type A 
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Figure 2.7. Geometry of Funnel Type B 
 

 

Figure 2.8. Geometry of Funnel Type C 
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CHAPTER 3 
 

MOLD HEAT TRANSFER 
 

3.0. Overview 

The first step to understanding the thermal and mechanical behavior of the solidifying 

shell is to understand the heat transfer in the mold.  Mold heat transfer is also important in its 

own right for understanding and quantifying the impact of funnel shape design.  Some of the 

easiest plant measurements to obtain and use for validating numerical models are the 

temperatures from the thermocouples embedded in the mold plates.  Calibration of such models 

requires the accurate prediction of the relationship between the mold temperatures and the shell-

mold interfacial heat flux.  Clearly, an accurate mold heat transfer model is needed for the 

current work, and the development of such is the subject of this chapter.  The majority of the 

content of this chapter is published in the literature [14,15], though some new content is 

available here.  This work was a collaborative effort with Corus researchers and plant personnel 

at the Direct Sheet Plant (DSP).  Plant measurements and the parametric study using the one-

dimensional model, CON1D, were provided by B. Santillana, A. Hamoen, A. Kamperman, and 

W. van der Knoop.  The finite element models presented in this chapter were built and applied 

by L. Hibbeler. 

 

3.1. Introduction 

Mold heat transfer is important to mold life, slab surface quality, breakouts, and many 

other aspects of the steel continuous-casting process.  Heat transfer in funnel molds has been 

investigated in only a few previous studies, examining heat flux profiles [12], mold distortion 

and cracking [11,12,13], phenomena in the steel/flux interface [3,8,9,16], and fluid flow coupled 

with solidification heat transfer [10].  Heat flux tends to be higher in thin-slab casting than in 

conventional billet or slab casting, which is attributed to the higher casting speeds [12].  

Computational models can reveal insights into mold heat transfer, so long as they have been 

calibrated with plant data.  Recent modeling studies of billet casting, which use thermocouple 

measurements and inverse heat transfer calculations to determine the heat flux profile, have 

shown that mold hot-face temperature increases with increasing mold plate thickness and casting 

speed [2,18,19].  Another such model, CON1D [7], simulates one-dimensional heat transfer in 
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the mold, interface, and solidifying shell [9], and has shown how interfacial slag properties affect 

heat transfer and lubrication [8]. 

In the present study, the CON1D model is applied to simulate high-speed thin-slab 

casting in a funnel mold.  To account for the multidimensional thermal behavior around the 

cooling channels of the funnel mold, a three-dimensional finite-element model, developed using 

ABAQUS [1], is applied to find correction factors that enable CON1D to predict accurately the 

temperature at thermocouple locations.  The model calculations have been validated using an 

extensive database of plant data obtained from the Corus Direct Sheet Plant (DSP) in IJmuiden, 

The Netherlands, including measurements of mold powder consumption, oscillation mark shape, 

mold temperature, and heat removal.  The improved CON1D model is applied here to predict 

casting behavior for different speeds and to investigate the effect of mold plate thickness.  The 

results will be used to extrapolate standard practices to higher casting speeds and new mold 

designs, and will also be used to create a calibrated thermo-mechanical numerical model of the 

solidifying steel shell in Chapters 4 and 5. 

 

3.2. CON1D Model Description 

The heat transfer model CON1D simulates several aspects of the continuous casting 

process, including shell and mold temperatures, heat flux, interfacial microstructure and velocity, 

shrinkage estimates to predict taper, mold water temperature rise and convective coefficient, 

interfacial friction, and many other phenomena.  The heat transfer calculations are one-

dimensional through the thickness of the shell and interfacial gap with two-dimensional 

conduction calculations performed in the mold. 

Heat transfer in the mold is computed assuming a slab with attached rectangular fins that 

form the cooling-water channels.  The process parameters used in this analysis are typical values 

used with the Corus DSP thin-slab continuous-casting machine.  Key parameters include a strand 

thickness in the mold of 90 mm, low carbon steel poured at 1545 ºC, and a meniscus level of 100 

mm below the top of the 1100 mm-long funnel mold.  The casting speeds used in model 

calibration are 4.5 m/min for the narrow face and 5.2 m/min for the wide face.  The different 

casting speeds were used to show that the correction factors calculated in this work depend only 

on mold geometry.  To model accurately the complex geometry of the mold and water slots on 
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both faces, geometry modifications and an offset methodology [6] are applied to calibrate the 

CON1D model to match the temperature predictions of a full 3D finite element model. 

 

3.2.1. Narrow Face 

To create the simple mold geometry for CON1D, the actual narrow face cross-section 

was transformed into the one-dimensional rectangular channel geometry (dotted lines), as shown 

in Figure 3.1. The bolt holes are 22 mm in diameter and 20.5 mm deep; the thermocouple holes 

are 4 mm in diameter and extend into the mold such that they are 20 mm beneath the hot face.  

To approximate the actual geometry, the shortest distance between the water channels and the 

hot face was maintained at 24 mm and the pitch between the channels similarly was set to 12 

mm.  To match the water flow rate, the dimensions of the rectangular channels were chosen to 

keep the cross-sectional area nearly the same as that of the actual 14 mm diameter channels.  In 

addition, to maintain heat transfer characteristics, the channel width was chosen to be about two-

thirds of the diameter of the actual round channel.  These two considerations yield a 9 mm by 17 

mm channel and a 41 mm thick mold.  CON1D aims only to model a typical section through the 

mold and cannot predict variations around the mold perimeter, such as corner and funnel effects. 

 

Figure 3.1. Narrow Face Mold Geometry and CON1D Simplification 
   

3.2.2. Wide Face 

Water channels in the wide face required similar dimensional adjustments for CON1D.  

The actual water channels are spaced 5 mm apart and are 5 mm wide by 15 mm deep with 

rounded roots.  The CON1D water channels are 5 mm wide but only 14 mm deep, so that filled 

area equals the hatched area in Figure 3.2, and the cross sectional area again roughly equals that 
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of the actual channel.  The mold thickness was maintained at 35 mm.  As shown in Figure 3.3, 

this keeps the channels at a constant distance of 21 mm from the hot face, in comparison with the 

real mold, where closest point of the rounded channel root is 20 mm from the hot face.  The bolt 

holes have the same dimensions as on the narrow face, but on the wide face the thermocouple 

holes extend into the mold such that they are 15 mm from the hot face. 

 

 

Figure 3.2. Wide Face Water Slot and CON1D Simplification Figure 3.3. Wide Face Mold Geometry 
 

3.3. CON1D Model Offset Determination 

To enable CON1D to predict accurately the thermocouple temperatures, it was calibrated 

using a three-dimensional heat transfer calculation to determine an offset distance for each mold 

face to adjust the modeled depth of the thermocouples. 

 

3.3.1. Narrow Face 

Two different three-dimensional heat transfer models were developed of the mold copper 

narrow faces using ABAQUS.  The first was a small, symmetric section of the mold geometry 

containing one quarter of a single thermocouple, which was used to determine the offset for 

CON1D.  The second was a complete model of one symmetric half of the entire mold plate, used 

to determine an accurate temperature distribution including the effects of all geometric features 

and to evaluate the CON1D model.   

To properly compare the finite-element model with CON1D, identical conditions were 

applied to both models.  Figure 3.4 shows the location of a typical repeating portion of the entire 

mold plate, and Figure 3.5a shows the mesh and simplified boundary conditions used for this 

calibration domain. The applied heat flux q  = 2.6 MW/m² to the hot face is constant and 
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uniform, as are the thermal conductivity k  = 350 W/(m·K) of the mold, the convective heat 

transfer coefficient ch  = 40 kW/(m²·K) and the water temperature T∞  = 36 ºC applied to the 

water channel surfaces.  Unlabelled surfaces are insulated ( q  = 0).  The finite-element mesh 

used 45840 hexahedron, tetrahedron and wedge quadratic finite elements and ran in 80 seconds 

(wall clock) on a 2.0 GHz Intel Core2 Duo PC.   

 

Figure 3.4. Location of Narrow Face Calibration Domain 
 

Figure 3.5. Narrow Face Model, Boundary Conditions, and Calibration Results 
 

Figure 3.5b shows the computed three-dimensional temperature contours and identifies 

the location of the thermocouple, as well as the face from which further data were extracted.  The 

maximum temperature of 296 ºC is found on the hot face corner, which is 20.5 ºC hotter than the 

hot face centerline.  The temperature profiles along four paths are shown in Figure 3.6, in which 

a linear temperature gradient is evident between the hot face and the water channels.  The 

temperature variation between these paths is small, with only 2 ºC difference across the hot face 

in the vicinity of the paths.  The lowest temperature is found on the back (cold face side) of the 
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water channel (Path 3).  However, the missing copper around the thermocouple causes the local 

temperature to rise about 10 ºC.  To account for this effect in CON1D, an offset distance is 

applied to the simulated depth of the thermocouples.  

An offset distance enables the one-dimensional model to relate accurately thermocouple 

temperatures by accounting for three-dimensional conduction effects from the complex local 

geometry [6].  The “offset” is the difference in position between the thermocouples in the mold 

and in the model, and is the distance the thermocouple position is shifted when input to CON1D. 

Figure 3.7 compares the temperature distribution of CON1D with the Path 1 results from 

Figure 3.6.  Although CON1D cannot capture the localized effects of the complex geometric 

features, the three-dimensional thermocouple temperature can be found by “moving” the 

thermocouple to a new location closer to the hot face.  This small “offset distance,” allows 

accurate thermocouple temperatures to be predicted by CON1D.  The offset value can be 

determined from Equation (3.1) using the CON1D temperature profile as follows: 

 ( ) ( ) 30
139.7 273.16 20 2.05mm

50.21 273.16offset TC hf TC

dx
d T T d

dT
= − − = − − =

−
 (3.1) 

where offsetd  is the offset distance, TCT  is the thermocouple temperature from the 3D model, hfT  

is the hot face temperature from CON1D, dx dT  is the reciprocal of the temperature gradient in 

the mold from CON1D, and TCd  is the actual depth of the thermocouple from the hot face. 
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 Figure 3.7 shows that CON1D is able to match the three-dimensional results from the hot 

face to the water channel roots.  Its accuracy drops in the non-linear water-channel regions of the 

mold, and near the thermocouple location, where matching is achieved by via the offset method. 

  

3.3.2. Wide Face 

Following the same procedure used in the narrow face, the offset distance for the wide 

face was also calculated.  Figure 3.8 shows a symmetric half of the wide face mold, and 

highlights the location of the calibration section.  The boundary conditions and properties were 

maintained the same as in the narrow face.  A top view of these conditions and the three-

dimensional temperature distribution is plotted in Figure 3.9. The thermocouples in the real wide 

face are positioned 15 mm from the hot face. The offset was found to be 2.41 mm, meaning that 

the thermocouples in CON1D should be 2.41 mm closer to the hot face in order to produce 

accurate thermocouple predictions. 

 

Figure 3.8. Location of Wide Face Calibration Domain
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Figure 3.9. Wide Face Calibration Domain with Input Parameters 
 

3.4. Three-Dimensional Mold Temperatures and CON1D Model Verification 

Having calibrated the CON1D model by determining the offset distance, both the full 

three-dimensional model and CON1D simulation were run using realistic boundary conditions 

for the mold. 

  

3.4.1. Narrow Face 

One symmetric half of the entire three-dimensional narrow face geometry was analyzed 

in ABAQUS, using the DFLUX and FILM user subroutines to realistically vary the heat flux and 

water temperature down the mold, as given in Figure 3.10.  The thermal conductivity and water 

channel boundary conditions were not altered from the calibration model.  This ABAQUS model 

used 468583 quadratic tetrahedron elements and required 7.1 minutes (wall clock) to analyze.  

Figure 3.11 shows the temperature contours from the three-dimensional model of the entire mold 

narrow face.  Localized three-dimensional effects are observed near the peak heat flux region 

and at mold bottom.  The cooler spot around the centre of the hot face corresponds to an 

inflection point in the heat flux curve.  The highest temperatures occur at the small, filleted 

corners of the mold at the peak heat flux because those locations are furthest away from the 

water channels.  
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Figure 3.10. CON1D Output Heat Flux and Water Temperature Profiles 
 

Figure 3.11. Narrow Face Three-Dimensional Model Temperature Results 
 

Figure 3.12 shows the three-dimensional hot face temperatures extracted along the mold 

centerline compared with the hot face temperatures from CON1D.  The two models match very 

well (typically within 2 ºC) except around the areas with strong three-dimensional effects.  

Maximum errors are 9.2 ºC near the heat flux peak and 27 ºC at mold bottom, where the water 

slots end and no longer receive the fin enhancement to the heat transfer. 

Figure 3.13 shows the temperature contours around the area of peak heat flux, 

highlighting the localized thermal effects at this location.  Although the CON1D model is least 

accurate at the hot face at this location, its two-dimensional mold temperature calculation in the 

vertical slice allows it to achieve acceptable accuracy. 

The temperatures predicted at all seven of the thermocouple locations in the mold 

compare closely with the offset CON1D values in Figure 3.12.  The topmost of the eight bolt 
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holes does not have a thermocouple and the middle hole in Figure 3.13 is for alignment.  The 

results are tabulated in Table 3.1 and illustrated in Figure 3.12.  The temperatures match almost 

exactly (within 1.4 ºC or less), which is within the finite-element discretization error.  This is a 

great improvement over the error of 12 to 21 ºC produced by CON1D without the offset. 

 

Figure 3.12. Narrow Face Hot Face and Thermocouple Temperatures Comparison 
 

Figure 3.13. Temperature Contours around the Peak Heat Flux 
  

Lowering the location of the peak heat flux by 80 mm to the level of the first 

thermocouple (such that localized three-dimensional effects are at a maximum at a 

thermocouple) and applying the offset method leaves an error of only -3.4 ºC at that 

thermocouple in CON1D [4].  Figure 3.12 also shows that the CON1D offset method is 
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independent of heat flux, since the same offset was applied to all thermocouples.  This means 

that a given mold geometry needs to be modeled in three dimensions only once prior to 

conducting parametric studies using CON1D. 

 

Table 3.1. Narrow Face Thermocouple Temperature Comparison 

Distance Below 
Meniscus (mm) 

3-D model CON1D CON1D with Offset 

Temperature (ºC) Temperature (ºC) Difference (ºC) Temperature (ºC) Difference (ºC)

115 186.6 165.4 -21.2 187.5 0.9 
249 148.9 133.6 -15.3 150.0 1.1 
383 135.7 122.5 -13.2 136.7 1.0 
517 126.3 114.7 -11.6 127.4 1.1 
651 129.8 118.0 -11.8 131.1 1.3 
785 137.6 124.9 -12.7 139.0 1.4 
919 142.9 129.6 -13.2 144.3 1.4 

 

3.4.2. Wide Face 

In Table 3.2, ABAQUS and CON1D output results are compared along the mold 

perimeter in the calibration domain, 219 mm below the meniscus.  The temperature at the cold 

face is tabulated at two points, and Figure 3.14 shows the temperature profile around the 

perimeter of a wide face water channel.  As expected, point 1 is always hotter (around 90 °C) 

than point 2 (around 76 °C).  CON1D predicts temperature of the water slot root (cold face) to be 

81.4°C, which lies in between these two values.  Water slot temperatures near the bolt hole are 

slightly hotter than those near the symmetry plane. 

 

Table 3.2. Wide Face Temperature Comparison 
Parameter ABAQUS CON1D 

Hot face temperatures 237.2 - 243 ºC 237.4 ºC 
Cold face temperatures in the cooling channels: 
Point 1- bottom of curved channel root  
Point 2- first straight points after the curve 

Point 1- 89.44 – 91.43 ºC 
Point 2- 75.08 – 77.75 ºC 

81.4 ºC 

Temperature at the thermocouple location 143.9ºC 143.90 ºC (with offset) 
 

 Similar to the narrow face, a full three-dimensional model of one symmetric half of a 

wide face was constructed and boundary conditions applied according to the output from 

CON1D.  Nearly all geometric details of the mold plate are included in this model to achieve as 

realistic results as possible.  The mesh consisted of 4,223,072 tetrahedron elements and 855,235 

nodes.  The temperature contours of the hot face are shown in Figure 3.15. 
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Figure 3.14. Temperature Profile around the Perimeter of a Wide Face Water Channel 
 

The nonuniformity of the hot face temperatures in any horizontal plane is quite clear from 

Figure 3.15.  These nonuniformities arise mainly from the columns of mold bolt holes, which are 

cooled by two round holes, which causes different cooling than in the adjacent slot-like water 

channels.  Other researchers have observed the hot spots at the meniscus and corresponding 

temperature peaks running down the mold hotface opposite the bolt holes in both conventional 

slabs [17] and funnel molds [13].  O’Connor and Dantzig [11] isolated the glitches in the hot face 

temperature distribution observed along the funnel transition seams, in both Figures 3.15 and 

3.16, which is a small effect.  In addition, there is converging and diverging heat flow into the 

outer- and inner-curve surfaces of the funnel region, respectively, and nonuniform water channel 

depth below the hot face of the mold.  The temperatures in several horizontal plane slices down 

the mold are shown in Figure 3.16.  The inside flat and inside curve regions suffer from a local 

increase in temperature of about 25 ºC that persists from the meniscus until nearly mold exit.  

This coincides with a column of bolt holes, which has less cooling in most of the mold. This 

issue will be revisited in Chapter 5 in the context of cracks in the shell. 

Towards the bottom of the mold, temperature generally increases, due to the curvature of 

the water slots, as seen in Figure 3.15.  The exception to this observation is again due to the 

cylindrical cooling water channels bored vertically down the thicker copper regions containing 

the bolt holes, which still remove heat near the bottom of the mold, as observed in the 

temperature distribution presented in Figure 3.17.  The cooling bores are fed and drained to the 

water box by smaller bores, also illustrated in the figure.  While the high temperatures near mold 
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exit will certainly be detrimental to mold life, the shell is relatively thick at this location so is 

relatively insensitive to these changes in mold surface temperature.  

 

Figure 3.15. Wide Face Three-Dimensional Model Temperature Results 
 

These results show that CON1D can produce temperature predictions with the accuracy 

of a three-dimensional model in both the wide and narrow faces for any heat flux profile.  In 

addition to its increased speed and ease-of-use, the CON1D model includes powerful additional 
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calculations of the interfacial gap and solidifying shell.  Thus, calibrating the CON1D model 

using the offset method to incorporate the three-dimensional ABAQUS results unleashes a 

powerful and accurate tool to study continuous casting phenomena. 
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3.5. Validation with Plant Data and Typical Results  

After verifying that the CON1D model matches with the full three-dimensional model, 

the next important step is to validate CON1D results with plant data and to check the accuracy of 

the model under different casting conditions. 

 

3.5.1. Database Comparison  

A large database of plant data was compared with CON1D simulation results.  The 

database contains more than 700 average values of heat flux, thermocouple temperatures, and 

mold powder consumption (measured with a load cell), recorded from the wide faces during 
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stable casting periods.  Stable casting periods are at least 30 minutes of operation when the most 

important casting parameters, including casting speed and width, are constant.  These data were 

downloaded from the mold thermal monitoring (MTM) system of the level 2 control system. 

 

Figure 3.17. Effect of Cooling Bores at Mold Exit 
 

The first comparison with plant data was done for the average mold heat flux (from the 

cooling water) for different casting speeds.  The data were separated according to mold copper 

thickness into thick new plates (with 0 to 5 mm mold wear) and thin old plates (with 10 to 15 

mm mold wear).  The logarithmic curve-fit lines match very well with CON1D predictions, as 

shown in Figure 3.18.  This match is partly due to the effect of a thinner shell decreasing the 

thermal resistance at higher casting speed and thinner mold lowering the mold resistance, which 

both increase heat flux.  The realistic input data, given in Table 3.3, allow CON1D to capture 

these effects.  The match was improved by incorporating changes in the solid slag layer velocity, 

as discussed later.  In addition to investigating mold temperatures, shell growth and interfacial 
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phenomena, this calibrated and validated model enables extrapolation to predict behavior at 

higher casting speeds. 
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Table 3.3. Simulation Conditions 
Carbon Content, C% 0.045 % 
Liquidus Temperature, Tliq 1531 oC 
Solidus Temperature, Tsol 1509 oC 
Steel Density, ρsteel 7400 kg/m2 

Steel Emissivity, εsteel 0.8 - 
Initial Cooling Water Temperature, Twater  33 oC 
Cooling Water Velocity, Vwater  8.5 m/s 
Mould Emissivity, εmould 0.5 - 
Mould Slag Solidification Temp., Tfsol 1183 oC 
Mould Slag Conductivity, ksolid, kliquid  1.0, 1.5 W/(m·K) 
Air Conductivity, kair 0.06 W/(m·K) 
Slag Layer/Mould Resistance, rcontact 9.5E-5 m2K/W 
Mould Powder Viscosity at 1300oC, µ1300 0.9 Poise 
Viscosity Temp.-dependence exponent, n  2.7 - 
Slag Density, ρslag 2600 kg/m3 
Slag Absorption Factor, a 250 m-1 
Slag Refractive Index, m 1.667 - 
Slag Emissivity, εslag 0.9 - 
Pour Temperature, Tpour  1545 oC 
Slab Geometry, width×thickness W × N 1420×70 mm×mm 
Nozzle Submergence Depth, dnozzle 150 mm 
Oscillation Mark Geometry, dmark × wmark  0.08×1.5 mm×mm 
Mould Oscillation Frequency, freq 325 cpm 
Oscillation Stroke, stroke  6.0 mm 
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3.5.2. Velocity Ratio between Solid Slag Layer and Steel Shell 

The solid slag layer is assumed to move down the mold at a time-averaged velocity that 

varies with distance down the mold according to the behavior of the liquid layer, interfacial 

friction, heat transfer, and other phenomena.  This velocity, fluxV , ranges between zero (if the 

slag layer is attached to the mold) and the casting speed (if the slag layer is attached to the shell).  

The ratio between the solid slag speed and the casting speed must be input to the CON1D model.  

For a given powder consumption rate, this controls the time- and spatial-averages of the slag 

layer thickness, which greatly influences mold heat flux.  This ratio is estimated from the 

following mass balance, assuming that liquid flux exiting the mold is negligible: 

 flux MP

C slag slag

V Q

V dρ
=  (3.2) 

where fluxV  is the velocity of the solid slag layer (m/min), CV  is the casting speed (m/min), MPQ  

is the mold powder consumption rate (kg/m²), slagρ  is the mass density of the mold slag (kg/m³), 

and slagd  is the slag layer thickness (m). 

In practice, this velocity ratio varies with distance down the mold, which was 

characterized in this work to increase linearly between two values.  At the meniscus, the ratio is 

zero, because the solid slag sticks to the mold wall and is relatively undisturbed due to the low 

friction associated with the liquid slag layer lubrication.  At mold exit, Equation (3.2) is applied, 

based on the typical thickness of the solid slag layer that was measured at mold exit.   

Slag film fragments previously taken from the mold exit of the Corus DSP caster ranged 

from 50 to 500 microns in thickness [5].  These thin plate-like fragments were found to be split 

into thinner mold-side and shell-side pieces, and the average thickness of 200 microns was used 

as a first approximation in calculating the velocity ratio with Equation (3.2).  Further velocity 

ratios were found as a function of casting speed for both new and old mold plates, to match the 

average heat fluxes from the plant data.  These two sets of ratios are plotted in Figure 3.19, and 

compared with mold powder consumption.  

The velocity ratio has a strong correlation with the mold powder consumption, as given 

in Equation (3.2).  This relation also can be seen in Figure 3.19, where both velocity-ratio curves 

drop with increasing casting speed in the same way as the mold powder consumption.  This 
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finding is logical because a higher casting speed increases both hot face temperature and shell 

surface temperature in the mold.  This encourages a hotter, thicker liquid slag layer that extends 

further down the mold, which encourages the solid slag layer to remain more attached to the 

mold wall, producing a lower velocity.  Furthermore, the higher hot face temperature tends to 

keep the mold slag above its glass transition temperature, making slag fracture less likely and 

thus lower average velocity ratio at higher casting speed. 

 

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

3 3.5 4 4.5 5 5.5 6 6.5
Casting speed (m/min)

V
el

oc
it

y 
R

at
io

 a
t M

ou
ld

 E
xi

t (
--

)  

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ou

ld
 p

ow
de

r 
co

ns
um

pt
io

n 
(k

g/
m2 ) 

New Plates Vel. Ratio
Old Plates Vel. Ratio
Powder Consumption

Figure 3.19. Effect of Casting Speed on Consumption and Velocity Ratios 
 

Mold heat flux varies with casting speed, velocity ratio and mold plate thickness.  The 

CON1D results indicate that the velocity ratio itself varies with plate thickness.  As older plates 

become thinner with wear, the mold hot face temperature is reduced, which has a similar effect 

to decreasing casting speed.  Thus, the velocity ratio is expected to increase with old plates, as 

shown in Figure 3.19.  The actual speed of the moving solid slag layer is not easily measured.  

Thus, the application of calibrated and validated models such as CON1D is important to achieve 

the understanding of mold phenomena necessary to extrapolate plant data to new conditions and 

to solve product quality problems. 

 

3.5.3. Temperature Validation 

Plant data were obtained from a mold instrumented with forty thermocouples, as part of 

the standard MTM system to evaluate further the CON1D predictions.  A period of 23 minutes of 
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stable casting at a speed of 5.2 m/min and a width of 1328 mm was chosen for this comparison, 

due to its stability in the thermocouples measurements.  The meniscus level was measured to be 

about 100 mm below the top of the mold.  Although the mold is capable of having a 

thermocouple in every bolt hole, the instrumented mold has only four rows of thermocouples.  

The first and fourth rows have 10 thermocouples, while the middle two rows have two 

thermocouples.  The rows are 75, 200, 325, and 450 mm below the meniscus.  Further details are 

provided elsewhere [14].  The 15 mm thermocouple depth below the hot face was offset by 2.41 

mm to 12.59 mm for CON1D. 

The predicted hot face temperature profile, cold face (water slot root) temperature profile 

and thermocouple temperatures from CON1D are shown in Figure 3.20.  This figure also shows 

the average of the measured temperatures, which are slightly lower.  This might be due to boiling 

in the water channels or minor contact problems, both of which result in a lower mold 

temperature.  Scale formation in the water channels would cause the mold temperature to 

increase, providing another explanation for the variability in the measurements. 

 

 
Figure 3.20. Predicted Thermocouple Temperatures Compared with Plant Data 

 

3.5.4. Solidification Model Results 

Having validated the CON1D model capability to predict heat flux and mold temperature 

distribution down the mold, this modeling tool was applied to predict solidification and 

temperature evolution of the steel shell, and the behavior of the mold flux layers in the interfacial 
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gap.   Typical results are presented in Figures 3.21 and 3.22 for the conditions in Table 3.3, 

comparing the wide face of new and old molds at 5.5 m/min casting speed. 

 

Figure 3.21. Shell Thickness Profiles Figure 3.22. Shell Surface Temperature Profiles 
 

Shell thickness increases down the mold at a decreasing rate, as the solid resistance 

increases.  This contributes to lowering the heat flux across the interfacial gap.  Shell thickness 

and heat flux are both lower for the new mold because the thicker mold provides additional 

thermal resistance, though he effect is very slight.  The shell surface temperature also drops with 

distance down the mold, with variations that depend on the local heat flux.  The lower surface 

temperature for old plates is due to the higher heat flux.  The changes in slag layer thickness 

down the mold, which are governed by the changing velocity ratio, greatly affect all of these 

results.  Further details on using the CON1D model under realistic conditions are given in [7]. 

 

3.6. Parametric Study 

The verified, calibrated, and validated CON1D model is applied to investigate a range of 

mold thermal phenomena, including high-speed casting, mold powder properties, scale formation 

in the water channels and breakouts.  The effect of mold plate thickness and casting speed on 

interfacial gap phenomena are investigated here.  In each simulation, the velocity ratio and mold 

powder consumption were taken as functions of casting speed according to Figure 3.19. 

The effects of casting speed and mold plate thickness on various parameters at mold exit 

are shown in Figures 3.23 to 3.26.  Increasing casting speed naturally increases the mold hot face 
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temperature and decreases the shell thickness.  This causes higher slab surface temperatures, 

although the increased heat flux with increasing casting speed tends to counter this trend.  Slag 

layer thickness decreases with casting speed, owing to the smaller slag consumption rate, but the 

opposing effect of lower solid slag velocity ratio tends to lessen this trend.  Decreasing the mold 

plate thickness (as the plates become older) decreases the hot face temperature as expected.  This 

increases the solid slag layer velocity (Figure 3.19), which produces a thinner slag layer, as 

shown in Figure 3.26.  Combined with the smaller resistance of the thinner mold plate, this 

increases the heat flux.  This causes the shell thickness to increase slightly and slab surface 

temperature to decrease.  These effects might be compensated by adding a thicker mold coating 

layer, or by carefully decreasing the water slot velocity as the molds age and become thinner. 
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Figure 3.23. Effect of VC on Hot Face Temperature Figure 3.24. Effect of VC on Shell Thickness 
 

3.7. Conclusions 

This work summarizes the development of an accurate computational tool for modeling 

heat transfer in the thin-slab continuous casting mold at the Corus DSP.  Work towards this end 

includes model verification with a complete thermal three-dimensional analysis of the entire 

complex mold geometry, model calibration using the offset method to match thermocouple 

measurements and model validation with over 700 sets of plant data from an instrumented mold.  

The CON1D model is then applied together with plant measurements to gain new insights into 
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the effects of casting speed and mold plate thickness on mold heat transfer.  The modeling study 

has revealed that increasing the casting speed causes a thinner solidified steel shell, higher heat 

flux, higher mold hot face temperature, a thinner slag layer and lower solid slag layer velocity.  

Also, increasing the mold plate thickness increases hot face temperature, lowers solid slag layer 

velocity, increases slag layer thickness, and lowers mold heat flux.  The CON1D model is being 

applied to gain further insight into continuous casting of thin slabs, including the extrapolation of 

model predictions of heat transfer and interfacial phenomena to higher casting speed and the 

optimization of mold taper, mold distortion, and funnel design.  
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CHAPTER 4 
 

THERMAL BEHAVIOR OF THE SOLIDIFYING SHELL 
 

4.1. Introduction 

 Heat transfer is the driving force for any solidification process, and continuous casting is 

no exception.  The copper mold and water flow rate through it govern the heat extraction from 

the solidifying steel shell and thus the solidification characteristics of the steel.  This chapter 

emphasizes the heat transfer characteristics of solidifying shells in funnel molds, independent of 

the mechanical response of the shell and interaction with the mold.  The behavior of the shell is 

an inherently coupled thermo-mechanical phenomenon; this chapter analyzes the heat transfer in 

the shell with emphasis on the effects of the geometry of the funnel. 

 Previous work on thermal behavior of the solidifying shell is usually performed in the 

context of coupled thermo-mechanical phenomena (discussed in more detail in Chapter 5) or 

coupled heat-flow phenomena.  Numerical models are employed in almost every investigation, 

employing both the finite-difference method and finite element methods, with both implicit and 

explicit time integration schemes (cf. reviews in [21,22,28,40]).  Some of the earliest heat 

transfer models of the solidifying shell include that of Kung and Pollock [23], and Lait, 

Brimacombe and Weinberg [24].  More recently, the heat transfer and fluid flow around the shell 

were modeled in thin-slab casters both with a funnel [30] and without (parallel mold) [31].  The 

heat transfer in the shell was recently modeled in two dimensions [32], with numerous modeling 

issues, and three dimensions [22], as a proof-of-concept for stress modeling. 

 

4.2. Governing Equations and Their Finite-Element Representation 

 The heat transfer in the shell is governed by the conservation of energy equation [10], 

which balances external work and heat transfer via the first law of thermodynamics: 

  :
DH

R
Dt

ρ′= −∇⋅ + +q σ D   (4.1) 

where H  is the temperature-dependent total enthalpy, D Dt is the “material derivative” with 

respect to time, q  is the heat flux vector, ′σ  is the deviatoric stress tensor (cf. Chapter 5), D  is 

the rate-of-deformation tensor, ρ  is the mass density, and R  is the internal heat generation per 

unit volume.  For reasons to be discussed later, the mass density of the steel in this work is 
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assumed to be constant.  The heat flux vector is related to temperature via the generalized 

Fourier’s law, T= − ⋅∇q K , where K  is the thermal conductivity tensor and T  is temperature 

(use of Fourier’s law is acceptable because the working temperatures are sufficiently higher than 

absolute zero, the temperature gradients are relatively small, and time periods of interest are 

sufficiently long).  Neglecting internal heat generation and viscous dissipation effects, the 

conservation of energy equation is then: 

 ( )Dh
T

Dt
ρ   = ∇⋅ ⋅∇ 
 

K  (4.2) 

where h  is the specific enthalpy.  In the solid state, thermophysical properties exhibit very little 

dependence upon pressure, so applying the chain rule to the material derivative of enthalpy for 

temperature gives: 

 ( )h DT
T

T Dt
ρ ∂   = ∇⋅ ⋅∇  ∂  

K  (4.3) 

Expanding the material derivative of temperature then yields the governing equation for the 

temperature field in the solidifying shell: 

 ( )x y z

h T T T T
v v v T

T t x y z
ρ  ∂ ∂ ∂ ∂ ∂  + + + = ∇⋅ ⋅∇  ∂ ∂ ∂ ∂ ∂  

K  (4.4) 

where xv , yv , and zv  are the velocities of the material in the x -, y -, and z -directions.  

 Well-posed heat transfer boundary-value problems also require boundary conditions.  A 

solid body can be described by its interior Ω , in which the energy balance Equation (4.4) must 

hold, and its boundary Γ , on which boundary conditions must be specified.  Valid boundary 

conditions include specified temperatures spT T=  on part of the boundary TΓ , specified heat flux 

sp=q q  on part of the boundary qΓ , or a combination of the two.  Specified heat flux boundary 

conditions include direct specification of the heat flux sp spq=q n , convection boundaries 

( )sp conv ch T T∞= = −q q n , or radiation boundaries ( )4 4
sp rad e SB T Tε σ ∞= = −q q n , where spq  is the 

specified scalar heat flux, ch  is the convection coefficient, eε  is the emissivity coefficient, SBσ  

is the Stefan-Boltzmann constant, T∞  is the far-field temperature, and n  is the outward surface 

normal. 
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 The solid and liquid regions which comprise solidification problems may be handled with 

an additional thermal boundary condition at the internal interface which connects them, which is 

known as the Stefan condition.  The change of phase accompanies a release of heat at this 

interface, so along an initially unknown interior position in the domain (the solid-liquid 

interface), the local heat balance (considering only conduction and the phase change) includes 

the heat flux from the liquid, the heat flux from the solid, and the enthalpy of formation (latent 

heat of fusion), fH :  

 ( ) ( ) ( )f s sH T Tρ ∗ ∗ ∗ ∗− ⋅ = ⋅∇ ⋅ − ⋅∇ ⋅v v n K n K n   (4.5) 

where ∗v  is the velocity of the interface, v  is the velocity of the bulk material, ∗n  is the normal 

vector pointing from the solid to the liquid, and Fourier heat conduction has been assumed. 

 The heat transfer in the solidifying shell is fairly complicated, so it is best to let a formal 

scaling analysis dictate how to simplify the governing equation.  For the sake of the following 

argument, assume that the enthalpy consists of “sensible” and “latent” heats: 

 p f sh c T H f= +  (4.6) 

where pc  is the specific heat capacity assumed to be independent of temperature, and ( )sf T  is 

the mass fraction of the solid material in a given control volume.  Furthermore, assume that the 

thermal conductivity tensor is constant with temperature and isotropic, k=K I .  Define the 

following dimensionless variables:  

 sx x w∗ =  (4.7) 

 y y δ∗ =  (4.8) 

 mz z∗ =   (4.9) 

 ( ) ( )min max minT T T T T∗ = − −  (4.10) 

 dt t t∗ =  (4.11) 

where a superscript asterisk denotes the quantity is dimensionless, sw  is the slab width, δ  is the 

average shell thickness at mold exit, m  is the mold length, maxT  and minT  are the maximum and 

minimum shell temperatures in the mold, and d m Ct V=   is the dwell time of the shell inside the 

mold with casting speed CV .  The scaled governing equation is, with 0x yv v= =  and z Cv V= : 
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( )

( ) ( )

( ) ( ) ( )

max min max min

max min

2 2 2
max min max min max min

2 2 2 2 2 2

f s
p C

m C m

s m

H T T T Tf T T
c V

T T T V t z

T T T T T TT T T
k k k

w x y z

ρ

δ

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

  − − ∂ ∂ ∂+ +   − ∂ ∂ ∂  
− − −∂ ∂ ∂= + +

∂ ∂ ∂

 



 (4.12) 

Dividing through by the coefficient of the last term gives a dimensionless form of the governing 

equation: 

 ( )
2 22 2 2

2 2 2 2 2
max min

1 fm C s m m

p p s

HV f T T T T T

k c c T T T t z w x y zρ δ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

  ∂ ∂ ∂ ∂ ∂ ∂+ + = + +   − ∂ ∂ ∂ ∂ ∂ ∂  

  
 (4.13) 

Identifying the thermal diffusivity of the steel as T pk cα ρ=  reveals some classic dimensionless 

numbers.  The Péclet number, Pe C m TV α=  , is the ratio of heat advection to heat diffusion, and 

the Stefan number, ( )max minSte p fc T T H= − , is the ratio of sensible heat to latent heat.  These 

terms substituted into the dimensionless governing equation gives: 

 
2 22 2 2

2 2 2 2 2

1
Pe 1

Ste
s m m

s

f T T T T T

T t z w x y zδ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

 ∂ ∂ ∂ ∂ ∂ ∂ + + = + +  ∂ ∂ ∂ ∂ ∂ ∂  

 
 (4.14) 

Relative to a stationary observer, the continuous casting process operates at a steady 

state, so the transient term T t∗ ∗∂ ∂  is zero.  Using typical values for continuous casting of steel, 

including a casting speed of CV  = 5 m/min, mold length of m  = 1 m, thermal conductivity of k  

= 33 W/(m·K), mass density of ρ  = 7500 kg/m³, specific heat capacity of pc  = 661 J/(kg·K), 

enthalpy of formation of fH  = 272 kJ/kg, and a characteristic temperature drop of max minT T−  = 

500 ºC, the Péclet number is Pe  = 8.26·105 and the Stefan number is Ste  = 1.22.  Clearly, the 

advection dominates the heat transfer in the casting direction.  With δ  = 10 mm and sw  = 1.6 m, 

the aspect ratio terms are 2 2
m sw  = 0.444 and 2

m δ  = 105, which shows that the heat transfer 

through the thickness of the shell is the most important conduction term. 

 With negligible heat conduction in the casting direction, a Lagrangian domain may be 

used to analyze the heat transfer in the solidifying shell.  This approximation follows a two-

dimensional slice, perpendicular to the casting direction, of the solidifying strand as it moves 

down the mold at the casting speed.  This approximation essentially transforms the physical z -

direction into a temporal quantity, which is valid so long as the overall process remains at steady 



 

  48

state with respect to a stationary observer.  The relation between time and the z -direction, 

relative to the top of the mold, is given by: 

 C mz V t z= +  (4.15) 

where mz  is the average depth of the liquid pool below the top of the mold.  This relation is only 

valid for constant casting speeds; the generalization requires integrating the “casting 

acceleration” over the relevant period of time.  Continuous casting molds are oscillated at 

Hertzian frequency oscf  with peak-to-peak stroke of oscS  to avoid the shell from sticking to the 

hot faces of the mold; this effect can be included with a simple adjustment to the above space-

time transformation with: 

 ( )sin 2
2
osc

C m osc

S
z V t z f tπ= + +  (4.16) 

for sinusoidal oscillation patterns.  Non-sinusoidal patterns are sometimes used in commercial 

practice, and the above equation can be changed accordingly for those cases.  In practice, the 

oscillation frequency and stroke are functions of casting speed, both often increasing with 

increasing casting speed.  The governing equation for the two-dimensional slice of the 

solidifying shell is then: 

 ( )h T
T

T t
ρ ∂ ∂ = ∇ ⋅ ⋅∇
∂ ∂

K  (4.17) 

where the gradient operators consider only the x - and y -directions. 

 The governing equation for the temperature field, Equation (4.16), is a transient partial 

differential equation.  While analytical or “exact” methods do exist for solving such an equation, 

the many nonlinearities presented by the physics of the problem, as well as the nontrivial 

solution domain, make such an analytical solution extraordinarily difficult at best, and hence a 

numerical method is employed in this work to discretize and solve the governing equation.  The 

finite element method [7,41] is one such numerical method, and is particularly suited for the 

problem at hand because of its ability to treat complicated domain shapes.  The finite element 

method has several manifestations, including a specific case of the method of weighed residuals 

known as the (Bubnov-) Galerkin method, stated as: 

 [ ] { } 0
T

N R d
Ω

Ω =  (4.18) 
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where [ ]N  is the matrix of basis functions for a finite element, { }R  is the residual vector of the 

governing equation, and V  is the volume of the domain.  This statement forces the residual of 

the governing equation to zero in some average sense, and is enforced over each small finite 

element in which the domain has been sub-divided.  The formulation of the finite element 

method used here uses the nodal temperatures { }T  as solution variables, and so within an 

element the temperatures are interpolated according to: 

 [ ]{ }T N T=  (4.19) 

For the equation that governs the temperature field, this gives: 

 [ ] ( ) 0
T h T

N T d
T t

ρ
Ω

∂ ∂ −∇⋅ ⋅∇ Ω = ∂ ∂  K  (4.20) 

Integrating by parts gives the finite element statement of the governing equation: 

 [ ] [ ] { } [ ] [ ][ ] { } { }T Th
N N d T B K B d T F

T
ρ

Ω Ω

∂ Ω + Ω =
∂   (4.21)

 
 

where [ ]B  is the matrix of derivatives of element basis functions, { }T  are the nodal cooling 

rates, and the boundary conditions are lumped together in the thermal force vector { }F .  The 

boundary conditions are calculated according to: 

 { } [ ]
q

T

q sp qF N q d
Γ

= − Γ  (4.22) 

 { } [ ]
h

T

h c hF N h T d∞Γ
= Γ  (4.23) 

 { } [ ] [ ] { }
h

T

h c hk N h N d T
Γ

= Γ  (4.24) 

 { } [ ] ( )( )2 2

r

T

r e SB rF N T T T T T dε σ ∞ ∞ ∞Γ
= + + Γ  (4.25) 

 { } [ ] ( )( )[ ] { }2 2

r

T

r e SB rk N T T T T N d Tε σ ∞ ∞Γ
= + + Γ  (4.26) 

where the radiation condition has been factored to resemble a convection boundary condition.  

Note that the convection and radiation boundary conditions contribute to the thermal stiffness 

matrix of the system, in addition to the force vector on the right-hand-side.  The time integration 

of Equation (4.21) is treated with the fully implicit “Backward Euler” method: 

 { } { } { }( )1t t t t tT T T
t

+Δ +Δ= −
Δ

  (4.27) 
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where a given timestep has size tΔ .  The governing equation is now: 

 [ ] [ ] { } { }( ) [ ] [ ] { } { }1t t
T Tt t t t t t t t th

N N d T T B K B d T F
T t

ρ
+Δ

+Δ +Δ +Δ +Δ

Ω Ω

∂  Ω − + Ω = ∂ Δ   (4.28) 

Since enthalpy, thermal conductivity, and the boundary conditions are dependent upon 

temperature, this equation is nonlinear.  In this work, the Newton-Raphson method is employed 

to solve the system of nonlinear equations: 

  

[ ] [ ] [ ] [ ] { }

[ ] [ ] { } { }( ) [ ] [ ] { } { }

1t t
T T t t

i i
i

t t tt t
iT T t t t t t t

i i i
i

h
N N d B K B d T

T t

T Th
N N d B K B d T F

T t

ρ δ

ρ

+Δ
+Δ

Ω Ω

+Δ+Δ
+Δ +Δ +Δ

Ω Ω

 ∂  Ω + Ω =  ∂ Δ 

−∂  − Ω − Ω − ∂ Δ

 

 

 (4.29) 

The tangent operator is calculated analytically, though not all contributions are calculated, so the 

Newton-Raphson method is best classified as a hybrid method.  At each iteration i , this matrix 

equation is solved for the temperature correction { }i
Tδ , and a new guess of the nodal 

temperature field is calculated simply with: 

 { } { } { }1
t t t t

i i iT T Tδ+Δ +Δ
+ = +  (4.30) 

The criteria for convergence are based on the maximum temperature correction and the 

maximum residual at any node. 

 Given that the change in enthalpy during the liquid-solid phase change is so severe, the 

quantity h T∂ ∂  at a given integration point is recalculated using a spatial-temporal averaging 

procedure to help the global iterative solution procedure converge better while maintaining a 

global heat balance [1].  Bonacina et al. [2] used a three-level implicit scheme that treats latent 

heat effects as enhanced specific heat capacity at an intermediate time step.  Comini et al. [6] 

improved upon this by using spatial gradients of enthalpy and temperature to better approximate 

the effective specific heat capacity.  Lemmon [27] used a slightly different version which better 

estimates the average enthalpy of the element.  Chidiac et al. [5] later proposed a spatial-

averaging technique for finite elements that uses the nodal temperatures and fraction solids to 

enhance the accuracy of the h T∂ ∂  prediction in both space and time.  Thomas et al. [34] 

compared many of the methods used for solidification heat transfer with finite element method 

and recommended that of Lemmon.  Voller et al. [37] expanded upon this comparison, and 

concluded that the appropriate method for treating the latent heat effects depends upon the 
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needed level of robustness, including geometric complexity, non-constant properties, ability to 

couple with other effects, and computational effort and accuracy.  

 

4.3. Thermal Material Properties 

 The conservation of energy equation (continuum or finite-element) requires the 

specification of thermophysical properties, including the specific enthalpy, thermal conductivity, 

and implicitly, the phase fractions.  These properties in real materials exhibit a dependence upon 

temperature, which must be known accurately for realistic simulations. 

   

4.3.1. Phase Fractions 

 Steels experience both liquid-to-solid and solid state phase transitions over a range of 

temperatures owing to their complex alloy compositions and competing thermal and solutal 

effects.  The change of phase from liquid to solid occurs over a specified temperature range often 

called the mushy zone, beginning at the liquidus temperature liqT , where solid first starts to form, 

and completing at the solidus temperature solT , where the last liquid freezes.  A release of heat 

accompanies the phase change, which is quantified in the enthalpy of formation, also called the 

latent heat of fusion, fH , which will be discussed in the next section.  These physics are built 

into a phase diagram, which can then be used to calculate the mass fractions of the individual 

phases within a given control volume.  Pure iron has three distinct solid phases, including the 

high-temperature body-centered cubic delta ferrite, the intermediate temperature face-centered 

cubic austenite, and the low-temperature body-centered cubic alpha ferrite.  A mixture of iron 

and carbon, the basis for steel, exhibits these phases as well as several other low-temperature 

phases (e.g., pearlite, bainite, etc.), which are not treated in this work since the temperatures of 

the solidifying steel shell do not become low enough within the mold itself.  The liquid and solid 

phases exhibit different thermal and mechanical behaviors, and the phase fractions are needed to 

accurately capture both the phase transformations and the differing behaviors. 

 Two different models are used in this work to calculate the phase fractions.  The low- 

temperature phase fractions are calculated using the lever rule and a linearized Fe-Fe3C phase 

diagram.  The linearized phase diagram is defined by 15 points, as shown in Figure 4.1, which 

are functions of the compositions of elements present in the alloy [19].  The high-temperature 
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phase fractions are calculated using the microsegregation model of Won and Thomas [38], which 

is also a function of the alloy composition, and calculates the liquidus and solidus temperatures 

based on the fact that the segregation around the secondary dendrite arms significantly 

suppresses the solidus temperature.  The composition of the steel grade used in this work is given 

in Table 4.1.  Regardless of the model used, the mass fractions of the liquid, delta-ferrite, 

austenite, and alpha-ferrite phases, f , fδ , fγ , and fα , respectively, can be calculated as a 

function of temperature, as shown in Figure 4.2.  The liquidus temperature is calculated as 

1528.2 ºC and the solidus temperature is calculated as 1508.1 ºC. 
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Figure 4.1. Linearized Fe-Fe3C Phase Diagram 
 

Table 4.1. Composition of Steel Used in This Work, in % wt. 
C Cr Cu Fe Mn Mo N Ni P S Si Ti V 

0.045 0.015 0.012 99.66 0.210 0.002 0.003 0.020 0.008 0.006 0.011 0.003 0.002 
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Figure 4.2. Phase Fractions of 0.045 %wt. C Steel 
 

4.3.2. Enthalpy 

 Enthalpy is an auxiliary thermodynamic function consisting of internal energy and the 

work done by pressure during volume changes, or, mathematically: 

 H U pV= +  (4.31) 

where H  is the total enthalpy, U  is the total internal energy, p  is pressure, and V is volume.  

Or, more conveniently, on a per-unit-mass basis: 

 h u p ρ= +  (4.32) 

where h  is the specific enthalpy, u  is the specific internal energy, and ρ  is the mass density.  

Enthalpy is convenient to use because it equals the heat input to a system at constant pressure, 
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which is an appropriate assumption to make in the context of materials processing at atmospheric 

pressure, such as the continuous casting process. 

 When several phases are present in a given control volume, the mixture enthalpy may be 

derived by assuming that the total energy content of the control volume is the sum of its parts: 

 mixH H H H Hδ γ α= + + +  (4.33) 

where mixH  is the mixture total enthalpy and H , Hδ , Hγ , and Hα  are the total enthalpies of 

the liquid, delta-ferrite, austenite, and alpha-ferrite phases, respectively.  Or, more conveniently, 

on a per-unit-mass basis: 

 mixh f h f h f h f hδ δ γ γ α α= + + +   (4.34) 

where mixh  is the mixture specific enthalpy and h , hδ , hγ , and hα  are the specific enthalpies of 

the liquid, delta-ferrite, austenite, and alpha-ferrite phases, respectively.  Harste [13] compiled 

measurements from several sources of the enthalpies of plain-carbon steels over a variety of 

temperatures and compositions and fit an equation to the measurements: 

 104642.3 824.6157 fh T H= − + + Δ 
  (4.35) 

 3 250882.26 441.3942 88.72118 10h T Tδ
−= + + ⋅  (4.36) 

 3 293453.72 429.8495 74.8901 10 fh T T H γ
γ

−= + + ⋅ + Δ  (4.37) 
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 (4.38) 

where temperatures are given in K and specific enthalpies are given in J/kg. The enthalpy of 

mixing was observed to have a dependence upon the composition of the steel, giving: 

 
2

618125 1.96612 10
43.839 1201.1f

C
H C

C
Δ = + ⋅

+
  (4.39) 

 
2

636601 1.90793 10
43.839 1201.1f

C
H C

C
γΔ = + ⋅

+
 (4.40) 

where carbon compositions are given in %wt. C.  A plot of the mixture specific enthalpy against 

temperature is given in Figure 4.3 for the 0.045 %wt. C steel considered in this work. 
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Figure 4.3. Specific Enthalpy of 0.045 %wt. C Steel 
 
 

4.3.3. Thermal Conductivity 

 Fourier’s law of heat conduction requires the definition of a constant of proportionality 

between the heat flux and the temperature gradient, called thermal conductivity.  Thermal 

conductivity is a measure of the ability of a material to transfer energy without moving the 

material itself.  Metals are typically very good conductors because of the ability of electrons to 

move freely through the lattice crystal structure.  Interpreting temperature as a measure of 

molecular energy, thermal conductivity can exhibit a dependence upon temperature because as 

temperature increases, molecules both vibrate more intensely and move faster, carrying more 

energy and thus more heat throughout the lattice. 
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 Individual crystals of metals have different conductivities along different directions 

because of different stacking patterns.  Polycrystalline solids generally do not exhibit this effect 

because the constituent crystals of the bulk material are often not all identically aligned.  In the 

case of continuously-cast steel, the subsurface material solidifies with parallel columnar 

dendrites, so some orientation effects might be present in this region.  This issue is left for future 

work; for the present work, the thermal conductivity is treated as isotropic, although its value is 

assumed to depend upon temperature and composition C : 

 ( ) ( ), ,T C k T C=K I  (4.41) 

 Another source of anisotropy of thermal conductivity is phase-change regions.  The 

thermal conductivities of the solid state phases of iron are not significantly different, as shown 

below, to warrant special treatment, but the liquid-to-solid phase change is affected by the 

anisotropic nature of the thermal conductivity; heat flows differently in the direction of dendrite 

growth than it does perpendicular to the growth direction, which consists of layers of liquid and 

solid material.  The “resistor” model of heat conduction [17] applied to layers of two materials 

identifies the effective thermal conductivity in the directions parallel k  and perpendicular k⊥  to 

primary dendrite growth as: 

 1 1 2 2k g k g k= + +   (4.42) 

 1 2

1 2

1 g g

k k k⊥

= + +  (4.43) 

where ig  is the volume fraction of phase i  in a given control volume.  Once these othrotropic 

thermal conductivities are known, a rotation tensor can be constructed to transform the values 

from directions along the dendrites to the analysis coordinate system.  In general, the dendrites 

may be assumed to grow in the direction of the temperature gradient, but this is not always the 

case, especially in sharp corners.  Depending upon the difference in conductivity between the 

phases, the heat flow can be significantly shunted in one direction, changing the solidification 

behavior at the solid-liquid interface.  The difficulty in using this mixture law lies in the fact that 

the apparent thermal conductivity in the liquid is affected by turbulent flow in the bulk liquid and 

the local fluid-solid interactions around the dendrites. 

 For the sake of simplicity, this work uses the mass-fraction mixture law which has been 

used by many others [21,28,40].  Mizikar [29] proposed enhancing the thermal conductivity of 
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the liquid phase to account for convection and turbulence in the liquid pool.  Choudhary et al. [8] 

investigated the value of the enhancement to the conductivity in the liquid, and found that an 

enhancement factor between 1 and 7 has little effect on the solidification behavior, and further 

increases in the enhancement factor retarded the solidification in their simulations of continuous 

casting.  Nevertheless, in this work the thermal conductivity of the liquid phase is enhanced by a 

factor of 6.65 [15] to account for the effects of convection in the liquid pool: 

 mixk f k f k f k f kδ δ γ γ α α= + + +   (4.44) 

Thermal conductivity is a difficult quantity to measure accurately because steady-state 

conditions are required, and other modes of heat transfer are proportional to the temperature 

difference across a distance.  Harste [13] compiled measurements from several sources of the 

thermal conductivity of plain-carbon steels over a variety of temperatures and compositions and 

fit a unified equation to the measurements: 

 39.0 6.65k = ⋅  (4.45) 

 23
121.6 8.35 10 1 ak T a Cδ

−   = + ⋅ −     (4.46) 

 320.14 9.313 10k Tγ
−= + ⋅  (4.47) 

 23 6 2
180.91 99.269 10 46.13 10 1 ak T T a Cα

− −   = − ⋅ + ⋅ −     (4.48) 

where temperatures are given in ºC, carbon compositions are given in %wt. C, and thermal 

conductivities are given in W/(m·K), mixk  is the mixture thermal conductivity and k , kδ , kγ , 

and kα  are the thermal conductivities of the liquid, delta-ferrite, austenite, and alpha-ferrite 

phases, respectively.  The ferrite phases where observed to have a noticeable dependence upon 

carbon composition, as manifested in the 2
11 aa C −   terms, where the parameters 1a  and 2a  are 

calculated from: 

 3
1 0.425 0.4385 10a T−= − ⋅  (4.49) 

 3
2 0.209 1.09 10a T−= + ⋅  (4.50) 

A plot of the mixture thermal conductivity against temperature is given in Figure 4.4 for the 

0.045 %wt. C steel considered in this work. 
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4.4. Model Verification with Analytical Solution 

Most practical engineering problems do not lend themselves to closed-form analytical 

solutions.  At the very least, the shape of the analysis domain leads to intractable mathematics.  

Realistic material properties, boundary conditions, and constitutive laws serve only to increase 

complexity.  Analytical models easily provide information about the influence of different 

problem parameters on the solution, although they are restricted to simple, often one-dimensional 

domains and ideal constitutive behavior.  Obtaining the same information from a numerical 

model requires a parametric study, incrementally changing one variable at a time and examining 

the effect upon the solution.  Analytical solutions also provide the means to benchmark and 

verify (address programming issues and estimate numerical errors) numerical models. 
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Physicists and mathematicians began looking into change-of-phase problems that 

included a moving boundary in 1831 when Lamé and Clapeyron [25] considered a simple model 

for a solidifying liquid sphere.  Stefan would also investigate the problem while looking into the 

melting and freezing of polar ice caps, publishing the first of a series of papers in 1889 [33].  

Stefan would later become the eponym of the class of problems involving moving boundaries.  

Franz Neumann presented the more general solution of the moving-boundary problem, which 

accounts for superheat in the liquid region, in his lectures at Königsberg University in the 1860’s 

[4], and his development is generally the adopted method for solving this class of problems.  

The difficulty in solidification problems is that the position of the solidification front is 

unknown and it is coupled directly to the transient heat transfer solution.  The boundary 

conditions of a problem of course dictate the tractability of the solution, and this class of 

problems has relatively few scenarios that yield a closed-form solution.  Dantzig and Tucker [10] 

present a generalization of Neumann’s solution that includes the casting mold in the analysis. 

Consider a pure material (or eutectic alloy) in the liquid state with the uniform initial 

temperature 0T , which is greater than the melting temperature mT  of the material, solidifying in a 

mold whose surface temperature wT  is everywhere lower than mT .  The analysis domain is free 

of heat sources or heat sinks.  The solidifying material has uniform, isotropic, and constant, but 

not necessarily equal, properties in the solid and liquid phases.  For the purposes of verifying a 

numerical model, the properties in the solid and liquid will be taken as equal; the most general 

case is given elsewhere [10].  Similarly, the mold is assumed to have high heat extraction 

capabilities and have uniform and constant temperature wT . The mass density of the material is 

included in the list of constant properties, which is an appropriate assumption for the nearly 

incompressible solid and liquid phases.  

Note that practical casting materials are usually alloys that solidify over a range of 

temperatures, and have temperature-dependent thermophysical properties.  The mold-solid 

interface governs the heat extraction by the mold that drives the solidification, and the interface 

heat transfer can be affected by air gaps caused by solidification shrinkage or by contamination 

with another material, such as scale build-up on the mold surface or mold flux powder 

entrapment.  However, for the purposes of this solution assume that there is perfect contact 

everywhere along the mold-solid interface.  Casting operations involve pouring the molten 

material into a mold, so generally the fluid motion cannot be ignored.  Fluid flow can transport 
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heat by the bulk motion of the material, and can effect solidification by breaking the growing 

dendrites, mixing away the solute gradients, and introducing impurities and gas bubbles.  In the 

interest of simplicity, this solution assumes no liquid or solid movement, so advection and 

viscous dissipation can be neglected in the entire solution. 

Restricting the analysis to a one-dimensional plane Cartesian domain greatly simplifies 

the task at hand.  Numerical solution of the one-dimensional Stefan problem has received 

considerable treatment over the past few years [9,11,12,14,35,36].  Two-dimensional 

solidification heat transfer solutions exist both numerically [26] and analytically [3], which both 

show good agreement with experimental results [18].  This particular analytical solution [3] for a 

wedge (a generalized corner) assumes a hyperbolic shape for the solidification front and uses a 

moving heat source to account for the energy required to change phases.  King et al. [20] present 

a thorough review of the methods used to solve two-dimensional Stefan problems, which are not 

treated here.  The assumption of a one-dimensional domain of course limits the validity of this 

solution to areas in molds away from corners and other two- or three-dimensional heat transfer 

effects.  In addition to a one-dimensional domain, the solidifying material considered here 

extends out to infinity in one direction.  The semi-infinite assumption makes the mathematics 

tractable but limits the validity of the solution to short times when considering finite domains. 

Returning to the problem, the uniform surface temperature of the mold wT  is significantly 

lower than mT  such that solidification occurs immediately.  This is equivalent to saying that at 

time 0t = , the surface temperature of the solidifying material is instantly lowered to wT . The 

mold has a far-field temperature of 0T .  As previously mentioned, the position of the 

solidification front must be determined simultaneously with the heat transfer solution, and for 

now it is defined as a general function of time ( )tδ δ= . In the solid material, the governing 

equations and boundary conditions are: 

 
2

2T
T T

t x
α∂ ∂=

∂ ∂
 for ( )0 x tδ< ≤  (4.51) 

 wT T=  at 0x =  (4.52) 

 mT T=  at ( )x tδ=  (4.53) 

In the liquid material, the governing equations and boundary conditions are: 
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2

2T
T T

t x
α∂ ∂=

∂ ∂
 for ( )t xδ ≤ < ∞  (4.54) 

 mT T=  at ( )x tδ=  (4.55) 

 0T T=  as x →∞  (4.56) 

The boundary condition at the solid-liquid interface is known as the Stefan condition, which 

equates the difference in heat fluxes to the heat liberated by the phase change: 

 f
s

T T d
k k H

x x dt

δρ∂ ∂− =
∂ ∂ 

 at ( )x tδ=  (4.57) 

Since the far-field boundary conditions match the initial conditions for the liquid and mold, a 

similarity solution will reduce the partial differential equation that governs the heat conduction 

into an ordinary differential equation in terms of both x  and t .  The normalized Gaussian error 

function has the properties ( )erf 0 0=  and ( )erf 1±∞ = ± , which yield the desired behavior to 

match the boundary conditions given the form of the governing equation.  The normalized error 

function is defined as: 

 ( ) ( )2

0

2
erf exp

x
x dξ ξ

π
= −  (4.58) 

The error function compliment is also used here, and is defined as: 

 ( ) ( )erfc 1 erfx x= −  (4.59) 

Assume a solution with: 

 1 2 erf
4 T

x
T c c

tα
 

= +   
 

 for ( )0 x tδ< ≤  (4.60) 

 3 4 erf
4 T

x
T c c

tα
 

= +   
 

 for ( )t xδ ≤ < ∞  (4.61) 

Considering the temperature distribution in the solid, the mold-solid interface condition gives 

1 wc T= , and then the solid-liquid interface condition yields: 

 
( )

2 erf
4

m w
T

t
T T c

t

δ
α

 
= +   

 
 (4.62) 
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Since mT  is constant by nature and wT   assumed to be a constant, the position of the interface 

( )tδ  must be proportional to t .  For generality, introduce a constant φ  and take: 

 ( ) 4 Tt tδ φ α=  (4.63) 

Note that the velocity of the interface, or the solidification rate, is then given by: 

 Td

dt t

φ αδ =  (4.64) 

The remaining constant in the temperature distribution can now be expressed in terms of the new 

constant ( ) ( )2 erfm wc T T φ= − , thus the temperature distribution in the solid is: 

 
( )

erf
erf 4
m w

w
T

T T x
T T

tφ α
 −= +   
 

 for ( )0 x tδ< ≤  (4.65) 

For later use, the temperature gradient in the solid is: 

 
( )

2

exp
4erf

m w

TT

T TdT x

dx tt απα φ
 −= −  
 

 for ( )0 x tδ< ≤  (4.66) 

The far-field condition in the liquid gives: 

 0 3 4T c c= +  (4.67) 

The solid-liquid interface temperature boundary condition gives: 

 ( )3 4 erfmT c c φ= +  (4.68) 

Combining these two conditions resolves the unknown constants: 

 
( )

( )
0

3
erf

erfc
mT T

c
φ

φ
−

=  (4.69) 

 
( )

0
4 erfc

mT T
c

φ
−

=  (4.70) 

So then the temperature distribution in the liquid is: 

 
( )

0
0 erfc

erfc 4
m

T

T T x
T T

tφ α
 −= −   
 

 for ( )t xδ ≤ < ∞  (4.71) 

For later use, the temperature gradient in the liquid is: 

 
( )

2
0 exp

4erfc
m

TT

T TdT x

dx tt αφ πα
 −= −  
 

 for ( )t xδ ≤ < ∞  (4.72) 
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Now the constant φ  must be determined, and the only boundary condition left to use is the 

Stefan condition.  Upon substituting in the appropriate temperature gradients, letting ( )x tδ=  

and simplifying, the resulting expression is: 

 
( ) ( ) ( ) ( )

( )
( )02 erf

exp erf
erfc

p m w p m

f f

c T T c T T

H H

φ
φ φ φ

φπ π
− −

= +  (4.73) 

All terms in this expression are known except for the monotonically increasing variable φ , 

which can be found using any of the numerical root-finding techniques.  The second term on the 

right-hand side of the above equation is the change to φ  due to superheat.  The description of the 

temperature solution is now complete. 

To validate the finite-element heat transfer model of this work using the analytical 

solution derived above, a single column of 300 or 600 0.1-mm-square bilinear 4-node 

quadrilateral heat-transfer finite elements was used to mesh a 60 mm (or 30 mm) × 0.1 mm 

domain.  As shown in Figure 4.5, the 30- or 60-mm edges are modeled as insulated, the 0.1-mm 

cold edge is given fixed a temperature boundary condition of wT  and the hot edge is insulated. 

 

Figure 4.5. Solidification Test Problem Domain and Boundary Conditions 
 

 Table 4.2 gives the various conditions used in the validation problem.  To accommodate 

the numerical solution, the melting point was approximated with a very narrow mushy zone.  

The boundary condition at the mold wall was enforced directly, which required a very small 

initial time step in the numerical simulation.  Previous researchers [21] have used a convection 

boundary with a very high heat transfer coefficient to aid convergence; this technique is not 

necessary here because of the large number of iterations necessary anyway for convergence with 

the large superheat in the liquid material. 

Prescribed temperature 
or heat flux 

Insulated 

Insulated 
Insulated

Length = 30 or 60 mm 

x
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Table 4.2. Properties Used in Solidification Thermal Test Problem 

Property Symbol Value Units 
Mass density ρ 7500.0 kg/m³ 
Specific heat capacity pc  661.0 J/(kg·K) 

Enthalpy of formation fH  272.0 kJ/kg 
Thermal conductivity k  33.0 W/(m·K) 
Initial temperature 0T  1525.0 ºC 

Melting temperature mT  1495.0 ºC 

Liquidus temperature liqT  1494.48 ºC 

Solidus temperature solT  1494.38 ºC 

Mold wall temperature wT  1000.0 ºC 
 

 Figure 4.6 shows a comparison between the numerical solution to this problem (with the 

30-mm domain) and the analytical solution just derived.  At the given level of mesh resolution, 

the numerical solution matches very well with the analytical solution.  The main mismatch 

between the methods occurs at the solidification front, which is caused by the mass lumping 

scheme used in the finite element method.  On coarser meshes, this effect is manifested as the 

“wiggles” in the predicted shell thickness.  The comparison between methods shows that in 

general, the numerical solution is no better than the width of the element in which the 

solidification front currently resides.  Experimentation with this numerical verification exercise 

shows that in the case with zero superheat, the numerical solution is valid until the shell 

thickness is approximately the length of the domain.  However, changing the hot edge boundary 

condition to a fixed temperature of 0T  delays solidification, by acting as a heat source. 

 Figure 4.7 shows that despite the favorable match of the spatial temperature solution, the 

prediction of the shell thickness eventually starts to deviate from the analytical solution.  

Reducing the maximum simulation time step from 0.1 seconds to 0.01 seconds reduced this 

error, as shown in Figure 4.8.  Figure 4.9 shows that shell thickness predictions in the case 

without superheat match better, even with the larger timestep size.  A convergence study of this 

problem without superheat has been performed elsewhere [28,40].  This study shows that the 

numerical solution is reasonably accurate within 2% for meshes with 2-mm elements and time 

steps of 0.1 seconds, which was the basis for mesh selection for simulations of the real process.  
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4.5. Shell Model Setup 

 A finite element model of the solidifying shell was constructed to investigate the effect of 

the funnel mold geometry on the thermal behavior of the shell.  The model takes advantage of 

the two-fold symmetry present in funnel molds, and also considers only a two-dimensional slice 

that moves at the casting speed down the mold, as discussed in Section 4.2.  The material 

properties are defined as discussed above for a 0.045 %wt. C steel.  The analysis domain, as 

shown in Figure 4.10, is initialized to the pouring temperature of the molten steel, 1545 ºC, and 

the surface that would be in contact with the mold hot face is given a prescribed heat flux 

boundary conditions, which was calculated with CON1D and validated with plant measurements, 

which is the subject of Chapter 3. 

 

 

 The symmetry planes have the appropriate zero normal heat flux boundary condition.  

The analysis domain does not include the entire quadrant of the two-dimensional slice plane; the 

region closest to the center of the plane will always be in the liquid state while the analysis plane 

is in the mold, so inclusion in this analysis is not necessary and will only serve to increase the 

computational cost.  As discussed earlier, the necessary thickness of the analysis domain is 

approximately twice the expected shell thickness at mold exit, and in this work the domain 

thicknesses used are 20 and 25 mm.  The inner surface, which is always liquid, is modeled as 

Figure 4.10. Schematic of Computational Domain and Boundary Conditions 

Solidifying Steel

Mold 

Computational Domain 

Symmetry, q  = 0 
Symmetry, q  = 0 

Insulated, q  = 0 Insulated, q  = 0 

Liquid Region 

Liquid Region 

Wide Face Heat Flux, ( )WFq q t=  Narrow Face Heat Flux, ( )NFq q t=  

x
y  
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thermally insulated in this work.  The actual behavior of the material in the liquid region can be 

calculated with simulations of the fluid flow, and does affect the results of the solidification heat 

transfer modeled here by advecting superheated liquid throughout the liquid pool in the casting 

machine.  This is left for future work, and the results of the present work should be interpreted 

accordingly.  For example, the jet of molten steel leaving the SEN contains the most superheat of 

the domain, and the point at which the jet impinges upon the narrow face shell is known to be 

locally thinner than its surroundings because of it [16,39]. 

The two-dimensional heat transfer found in the corner of the domain increases the local 

heat removal rate, which causes the shell to grow the fastest in the corner.  However, due to lack 

of constraint, the solidification shrinkage (cf. Chapter 5) causes the shell in the corner to pull 

away from the mold, thereby opening a gap and reducing the heat flow out of the shell.  While it 

is certainly possible to construct a numerical model of the solidifying shell which includes this 

strongly nonlinear coupling between heat transfer and gap size [21,28], in this work a much 

simpler approach is adopted to save computational effort.  The heat applied heat flux in the 

corner region is reduced by a certain percentage to simulate the effect of the gap opening.  In the 

present work, this reduction factor grows from zero at 20 mm away from the corner to 50% at 

the corner itself, as illustrated in Figure 4.11.  Comparison of the calculated temperature field 

with previous work [21,28] shows that this method of treating the corner produces both 

reasonable shell temperatures and shell thicknesses.  Better treatment of the gap requires a fully 

coupled thermo-mechanical model, accurate mold temperatures, and information about the 

composition of the gap, and measurements for calibration, and is left for future work. 

 

 
Figure 4.11. Treatment of Interfacial Heat Flux Boundary in Corner Region 
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 The finite-element mesh used in this work was constructed by a simple preprocessing 

program that takes as input the dimensions of the different geometric features of a funnel mold, 

as explained in Chapter 2, and builds a mesh accordingly.  This approach saves the effort of 

building a mesh by hand for every simulation case and allows for easy study of the effects of the 

funnel geometry.  All meshes consist of standard four-node, “fully integrated” (2×2 Gaussian 

quadrature) bilinear quadrilateral finite elements, which are slightly biased towards the shell-

mold interface for increased accuracy in the solid region while saving computational effort in the 

liquid region that is present in the numerical model, as shown in Figure 4.12.  Node and element 

counts are given in the next section with the discussion of results. 

 

Figure 4.12. Detail of Finite Element Mesh of Solidifying Shell 
 

4.6. Shell Model Results 

 Typical results from the thermal model investigation are presented below.  These 

“typical” results are examined in the through-thickness direction as well as around the perimeter 

of the domain, and then a short parametric study is performed to investigate the effect of funnel 

geometry on the thermal behavior of the solidifying shell. 

 

4.6.1. Through-Thickness Direction 

 Typical temperature predictions through the thickness of the shell are shown in Figures 

4.13 and 4.14 for several times in the simulation, i.e., several distances below the meniscus, and 

Corner Near the 
Inside Flat-Inside Curve 

Transition 
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several positions below the surface of the shell.  The surface is of course always the coldest 

location due to the heat removal at the interface, and the effect of increasing the thermal 

conductivity to account for convection is manifested in the very low temperature gradients in the 

liquid region.  In general, the temperature gradients are stronger at the surface than near the 

solidification front.  The solid-state phase change from delta-ferrite to austenite has little effect 

on the thermal response of the steel, in both space and time, because the enthalpy of formation 

for that phase change is so low and the thermal properties are relatively similar. 
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Figure 4.13. Through-Thickness Shell Temperatures Figure 4.14. Shell Temperature Histories 
 

The temperature history data can be used to reconstruct the spatial results in the casting 

direction, which is presented in Figure 4.15.  The profile of the shell is evident in the shape of the 

isotherm lines, and the results can be further processed for the model predictions of shell 

thickness, which is presented in Figure 4.16.  The mushy zone is observed to increase in 

thickness as the shell moves down the mold, which will have consequences for crack formation, 

as discussed in Chapter 5. 

 

4.6.2. Circumferential Direction 

 A contour plot of the temperature field of the slice domain at mold exit is shown in 

Figure 4.17.  The plot shown is for the A-type mold discussed in Chapter 2.  The field is smooth 

everywhere around the perimeter, and the minimum temperature in the corner of 960 ºC indicates 

that the treatment of the heat flux in the corner is a reasonable approach.  The surface 
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temperatures around the perimeter of the shell are shown at different times in Figure 4.18, and 

with the geometric features delineated, it is clearly seen that the funnel geometry has a slight 

two-dimensional effect on the thermal behavior of the solidifying shell.  The inner and outer flat 

regions have identical temperatures, and from that temperature the inner curve region is at most 

3.4 ºC cooler and the outer curve region is at most 3.3 ºC warmer.  The transition from the flat 

region temperature value to the curved region temperature (where 0T x∂ ∂ ≠ ) occurs over 50 

mm for both the inside and outside curve regions, while the transition from the inside curve 

temperature to the outside curve temperature occurs over nearly 60 mm. 
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Figure 4.15. Temperature Field in Casting Direction Figure 4.16. Shell Thickness Profiles 
 

 Several hypothetical funnel molds based on the A-type design presented in Chapter 2 

were studied with identical boundary conditions and properties while systematically varying the 

funnel geometry.  The geometry and model sizes and run times (using 2 CPUs on a Dell 

PowerEdge 1750 Linux Cluster with Intel Xeon 3.2 GHz processors) of the cases presented here 

are summarized in Table 4.3, and the surface temperatures at 500 mm below the meniscus 

(halfway down the mold) are presented in Figure 4.19.  All cases used a mold length of 1100 mm 

and funnel length of 850 mm.  None of the cases exhibited large changes in shell thickness in the 

transition region compared with in the flat regions, even at early times.  The largest calculated 
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difference in shell thickness was 35 µm by mold exit (case 5).  The width of the regions of 

0T x∂ ∂ ≠  seems to be constant across the different cases, and is likely a function only of the 

thermal diffusivity of the steel and the heat load.  In general, the difference in temperature 

between the flat regions and the curved regions decreases with increasing funnel width and 

decreasing crown, i.e., the effect of the funnel geometry on the thermal behavior of the shell 

reduces as the funnel approaches a completely parallel mold.  Similar results were found in a 

study of the shell in B-type molds.  These trends are also observed in the results of previous 

work [22,32], though they did not attempt to quantify the results.  A review of the funnel 

geometry in Chapter 2 indicates that a single parameter, the horizontal plane funnel radius hr , 

can be related with the temperature difference in the funnel transitions regions relative to the flat 

regions, which is discussed next.  

 

Table 4.3. Summary of Funnel Geometries Simulated for Thermal Behavior Study 

Case Description 
Funnel Geometry (mm) Simulation Data 

iw  0w  Tc  Bc  Nodes Elements Runtime (hr) 

1 Base Case 130 375 23.4 8 15456 14762 3.52 
2 No Inner Flat 0 375 23.4 8 15456 14762 3.48 
3 Wider Funnel 130 475 23.4 8 15479 14784 3.49 
4 Shallow Crown 130 375 13 8 15456 14762 3.46 
5 Deep Crown 130 375 48 8 15456 14762 3.47 

Figure 4.17. Two-Dimensional Temperature Results at Mold Exit 
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Figure 4.19. Effect of Funnel Geometry on Shell Surface Temperature 

 

 The funnel transition region, regardless of its shape, serves to locally increase or decrease 

the heat extraction from the steel shell because of its two-dimensional nature.  This effect can be 
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quantified easily by considering only conduction effects in the conservation of energy equation 

on a simple curved domain using cylindrical coordinates in one dimension.  Motivated by the 

scaling arguments in Section 4.2.1, consider the conduction in the “through-shell-thickness” 

direction only of a slice through the shell with a fixed temperature on the hot liquid side and a 

prescribed heat flux to remove heat from the cold surface.  This analysis is applied to a 

rectilinear domain, representative of the regions away from the funnel transition and the corners, 

and is applied to a slice of cylindrical domain with no conduction in the circumferential 

direction, representative of the funnel transition region.  The locations of these sample domains 

in the solidifying shell are shown in the inset of Figure 4.20.  The models in both coordinate 

systems neglect conduction in the casting direction. The energy conservation equation with 

constant thermal conductivity is: 

 20 T= ∇  (4.74) 

In one rectilinear dimension, this reduces to: 

 
2

2
0

d T

dx
=  (4.75) 

which has the general solution: 

 ( ) 1 2T x c x c= +  (4.76) 

Subject to a fixed-temperature boundary of 0T T= at x =   gives 2 0 1c T c= −  , and a specified 

heat flux boundary ( )q k dT dx= −  gives 1c q k= − , so the temperature distribution is given by: 

 ( ) ( )( )0T x T q k x= − −   (4.77) 

In cylindrical coordinates, the governing equation (4.72) reduces to: 

 0
d dT

r
dr dr

 =  
 

 (4.78) 

which has the general solution: 

 ( ) ( )1 2lnT r c r c= +  (4.79) 

This domain presents two scenarios, i.e. the case where heat flows from the inner radius (where 

temperature is fixed) to the outer radius (where heat flux is extracted), as in the “inner curve” 

regions of the funnel, and the opposite case, which is representative of the “outer curve” regions 

of the funnel.  The fixed temperature boundary gives ( )2 0 1 ln oc T c R= −
 
if applied at the outside 
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radius or R=  or ( )2 0 1 ln ic T c R= − if applied at the inside radius ir R= .  The corresponding 

specified heat flux boundary ( )q k dT dr r= −  gives 1 ic qR k= −  if applied on the inside radius, 

or 1 oc qR k=  if applied on the outside radius.  Thus, the temperature distribution if the heat flux 

is applied on the inner radius (“outer curve” region) is: 

 ( ) ( )0 lni oT r T qR k r R= −  (4.80) 

Alternatively, the temperature distribution for the heat flux applied on the outer radius (“inner 

curve” region) is: 

 ( ) ( )0 lno iT r T qR k r R= +  (4.81) 

 Figure 4.20 compares the three though-shell-thickness temperature profiles in terms of 

distance away from the heat flux boundary with k  = 33 W/(m·K), 0T  = 1525 ºC, q  = 1000 

kW/m² outward, iR  = 675 mm, oR  = 700 mm, and   = 25 mm.  As intuitively expected, when 

heat flux is extracted from the outer radius, which is a gentle outside corner that enhances two-

dimensional heat transfer, heat flowing through the domain diverges so the temperatures are 

slightly cooler than the rectilinear case.  Similarly, when heat flux is extracted from the inner 

radius, heat flowing through the domain converges so the temperatures are slightly warmer.  The 

horizontal radii found in funnel molds are on the order of the given size and larger, and with 

larger radii the difference between the rectilinear and cylindrical cases becomes even smaller. 

 This exercise shows that variations in shell surface temperature, though small, are caused 

by the geometry of the mold, due to changes in curvature associated with the funnel shape.  The 

shell that solidifies along the inner curve regions of the funnel is expected to have a slightly 

cooler surface, and the shell solidifying along outer curves is expected to be slightly hotter.  The 

variations depend on the curvature.  For the conditions assumed here, surface temperature 

variations of about 13 ºC are predicted with Equations.(4.78) and (4.79).  This overpredicts the 

variations relative to the numerical variations of about 6 ºC observed in Figure 4.19, owing to 

geometry oversimplification and ignoring solidification.  However, the analytical solution does 

reveal that the surface temperature variations are caused by two-dimensional conduction effect 

associated with the funnel, which increases in proportion to decreasing horizontal funnel radius.  

Later sections of this work will show that these seemingly small differences in temperature have 
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the potential for severe consequences in the resulting mechanical behavior of the shell, given the 

sensitivity of constitutive laws to temperature at elevated temperatures. 
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Figure 4.20. Analytical Predictions of Through-Thickness Temperatures for Different Radii 
 

4.7. Conclusions 

 Mathematical models have been employed to study the effect of funnel geometry on the 

thermal behavior of the solidifying shell in continuous casting funnel molds.  After verifying a 

two-dimensional finite-element model with an analytical solution of solidification, the model 

was used to simulate the thermal behavior of the solidifying shell using an interfacial heat flux 

profile that was calibrated with plant measurements.  The funnel geometry is responsible for 

cooling the inside curve region of the funnel slightly faster than the flat regions, and similarly 

responsible for cooling the outside curve region slightly slower.  These effects have almost no 

influence on the temperature in the solidifying shell in the funnel transition region.  A parametric 

study of the funnel geometry revealed that this geometric effect is reduced as the funnel gets 

shallower and wider, and a simple analytical model identified that change in temperature can be 
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characterized by the horizontal radius of the funnel.  The heat transfer model and results 

presented here are investigated using the thermal-mechanical model in the next chapter. 
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CHAPTER 5 
 

MECHANICAL BEHAVIOR OF THE SOLIDIFYING SHELL 
 

5.1. Introduction 

 The mechanical behavior of the solidifying steel shell is mostly driven by the thermal 

strains that arise during solidification, but is also influenced greatly by the constitutive equation 

of the material, contact with the mold surface, and ferrostatic pressure.  The equations that 

describe the mechanical behavior of the solidifying steel are discussed below, as well as their 

representation into a finite-element model.  This mathematical description of the shell is then 

implemented into a computational model and used to investigate the behavior of the solidifying 

shell in continuous casting funnel molds, to predict longitudinal facial cracks, and to recommend 

improved funnel designs. 

 Many numerical models have been used to investigate the thermomechanical behavior of 

the solidifying shell in continuous casting molds since the pioneering work by Grill, 

Brimacombe, and Weinberg [7], but the mold geometry has been limited to conventional slabs 

[29,34,35], billets [24,30,36,38,41], rounds [9,21,32,33], and beam-blanks [4,10,16,22].  The 

thermomechanical behavior of the shell in funnel molds seems to have first been investigated by 

Park [31] in two dimensions and by Koric in three dimensions [16], but these studies did not 

quantitatively investigate the effect of funnel geometry. 

 

5.2. Governing Equations and Their Finite-Element Representation 

 The description of changes in position, orientation, shape, and size of a solid body is the 

subject of the field of kinematics, while the description of the forces that cause said changes are 

studied in the field of dynamics.  These areas are connected through the constitutive response of 

the material, and all of these come together in the field of continuum mechanics [2], which has 

created the mathematical framework to describe in the general deformation of solid bodies.  The 

equations are solved using the finite-element method with the commercial code ABAQUS 

augmented with user-defined subroutines.  The numerical solution process is briefly 

summarized, as complete details are given elsewhere [17]. 

 Consider a solid body in an initial / reference configuration at a reference time 0t , and a 

current/deformed configuration at some later time t .  Every material point is described relative 
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to a global coordinate system with a position vector  in the initial configuration and a position 

vector x  in the current configuration, as shown in Figure 5.1.  The displacement u  of a material 

point is calculated according to: 

 ( ) ( ), ,t t= −u x x x x    (5.1) 

The deformation gradient tensor F  maps a material fiber in the reference configuration dx  to 

the current configuration dx  according to: 

 d d= ⋅x F x  (5.2) 

The deformation gradient is invertible and is related to the displacement gradient ∇u  (taken with 

respect to the reference configuration) through the following relation: 

 = +∇F I u  (5.3) 

where I  is the second-order identity tensor.   

 

 
Figure 5.1. General Deformation of a Solid Body 

 

 The polar decomposition theorem allows the deformation gradient to be expressed in 

terms of a stretch and a rotation: 

 = ⋅ = ⋅F R U V R  (5.4) 

where R  is a proper orthogonal rotation tensor ( ( )det 1= +R ), U  is the right stretch tensor, and 

V  is the left stretch tensor.  Use of the right stretch tensor indicates that the material is first 

stretched and then rotated, while the left stretch tensor indicates the reverse.  The deformation 
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gradient is used to define the right Cauchy-Green deformation tensor C , which describes the 

stretch ratios of a material fiber along principal deformation directions:  

 2T= ⋅ =C F F U  (5.5) 

The deformation tensors above can be used to define different strain tensors, including the 

Green-Lagrange strain tensor E , which is used in this work: 

 ( )1

2
= −E C I  (5.6) 

The Green-Lagrange strain tensor exhibits the desirable property of being identically zero when 

the deformation consists only of rotation.  In terms of the displacement gradient, the Green-

Lagrange strain is: 

 ( ) ( )( )1

2
T T= ∇ + ∇ + ∇ ⋅∇E u u u u  (5.7) 

The Cauchy stress tensor σ  relates the traction vector t  and unit outward normal vector 

n  of a surface, all in the current configuration, by: 

 = ⋅t n σ  (5.8) 

Considering a body force (e.g., gravity) field b , the current mass density ρ , and the local 

material acceleration vector u , conservation of linear momentum implies the local force balance 

at any material point: 

 ( ) ( ) ( )ρ∇ ⋅ + =σ x b x u x  (5.9) 

Conservation of angular/rotational momentum requires the Cauchy stress tensor to be symmetric, 

or that T=σ σ .  Similarly, in the reference frame, the first Piola-Kirchhoff stress tensor P  

relates the traction vector t   and the unit outward normal vector n  through: 

 = ⋅t n P   (5.10) 

The local force balance is similarly expressed in the reference configuration for a body force 

field b , mass density ρ  , and local acceleration u : 

 ( ) ( ) ( )ρ∇ ⋅ + =P x b x u x       (5.11) 

In general, the first Piola-Kirchhoff stress tensor is not symmetric, though conservation of 

angular momentum is still satisfied.  For the problem at hand, the deformation of the material 

occurs over “long” periods of time (the deformation rates are many orders of magnitude slower 
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than the wave speed of the material [18]), so the inertial terms may be neglected in any 

configuration.  The Cauchy and first Piola-Kirchhoff stress tensors are related through: 

 ( ) 1det −= ⋅P F F σ  (5.12) 

 The solidifying steel in the mold can experience crack formation even when subjected to 

only a few percent of strain [34].  Several previous numerical models of the solidifying shell in 

conventional slabs and billets have shown that the deformation gradients are small when the steel 

shell is still in the mold [17,24,40].  This is also the case for the bending of the solidifying shell 

as it moves through a funnel mold.  Although the displacements and rotations are certainly finite 

in some regions of the shell, the displacement gradients are still small enough for the small-strain 

theory to apply.  The analysis performed here thus adopts the conventional small-strain measure 

and the static force balance in the current configuration: 

 ∇⋅ + =σ b 0  (5.13) 

 For the “small” displacement gradients of interest in this work, several simplifications of 

the above development can be made, namely that the reference and current configurations of the 

body are nearly identical. Thus, the Green-Lagrange strain tensor is approximately equal to the 

conventional small strain tensor ε , identified below. Mathematically, this gives: 

 d d≈ ⋅x R x  (5.14) 

 ( )≈ ⋅ +F R I ε  (5.15) 

 ( )( )1

2
T≈ = ∇ + ∇E ε u u  (5.16) 

 1−≈ ⋅P R σ  (5.17) 

If in addition, the rotations were small, then the Cauchy and first Piola-Kirchhoff stress tensors 

would be approximately equal, and the deformation gradient simply sum of the identity tensor 

and the small strain tensor.  These approximations are reasonable for conventional casting mold 

geometries and has been used in previous work. 

 The final governing equation for the solid mechanics problem is the compatibility of the 

strain field, i.e., the condition that no overlaps or gaps open in the domain.  For small strains, this 

requirement is expressed as: 

 0∇× ×∇ =ε  (5.18) 
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This compatibility condition for the strain field is enforced automatically when using the finite-

element method, which calculates strains from the displacements based on Equation. 5.16.  An 

issue that bears the same name arises in the finite element method, where the mesh should be 

prevented from opening holes.  This is not a concern in the formulation of the finite element 

method used here since the displacement field is continuous by construction. 

 The continuous casting model developed in this work assumes that heat conduction in the 

casting direction is negligible, reducing the problem to two dimensions.  The corresponding 

treatment for the mechanical problem is to assume a condition of “generalized plane strain” in 

the casting direction, where the out-of-plane displacement of the analysis domain is constrained 

to follow a plane (no warping, no out-of-plane bending).  This assumption is valid since the 

material above and below the analysis plane prevents the shell from bending.  Mathematically, 

this reduces the force balance to just two dimensions and imposes the out-of-plane resultant 

forces xF  and moments xM  and yM : 

 z zzF dσ
Ω

= Ω  (5.19) 

 x zzM x dσ
Ω

= Ω  (5.20) 

 y zzM y dσ
Ω

= Ω  (5.21) 

The strains also become two-dimensional, with the out-of-plane normal strain specified by: 

 0zz x yc c x c yε = + +  (5.22) 

where 0c , xc , and yc  are constants determined as a part of the solution, and the out-of-plane 

shearing strains xzε  and yzε  are equal to zero.  One plane of symmetry in the analysis domain 

forces one of the generalized plane strain constants to zero since one of the out-of-plane resultant 

moments vanishes.  Two or more planes of symmetry forces xc  and yc  both to be zero in 

accordance with no out-of-plane bending, 0x yM M= = , which is the case in the present work. 

 Well-posed mechanics boundary-value problems also require boundary conditions for 

each degree of freedom on every portion of the domain.  A solid body can be described by its 

interior Ω , where the force balance equation must hold, and its surface Γ , where boundary 

conditions must be specified.  Valid boundary conditions include either specified displacements 

sp=u u  on part of the boundary uΓ , specified surface tractions sp=t t  on part of the boundary 
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tΓ , or a combination of the two.  The force balance is specified by Equation (5.13) with 

generalized plane strain condition Equation (5.22) to reduce the dimensionality to two, and the 

strain-displacement relationship is specified by Equation (5.16).  The final relationship necessary 

to solve this mechanics problem relating forces and displacements is a constitutive law to relate 

stress and strain, and is discussed later. 

 The above governing partial differential equations are solved by employing the Bubnov-

Galerkin finite element method [5,42] to cast the equations in weak form and force the residual 

error to zero in an average sense.  The residual { }R  of the static force balance is: 

 { } [ ] { } [ ] { } [ ] { }
t

T T T
R B d N b d N t dσ

Ω Ω Γ
= Ω− Ω− Γ    (5.23) 

where [ ]N  and [ ]B  are the matrix of element basis functions and their spatial derivatives, { }σ  

is the Voigt vector of the Cauchy stress tensor, { }b  is the body force vector and { }t  is the 

surface traction vector.  An incremental approach is used to integrate the governing equation 

through time, where the solution variables at the end of an increment are updated from their 

values at the beginning of the step.  The displacement field is updated with incremental 

displacements { }uΔ  according to: 

 { } { } { }t t tu u u+Δ = + Δ
 (5.24) 

The total strain field is updated with incremental strains { }εΔ  by: 

 { } { } { }t t tε ε ε+Δ = + Δ  (5.25) 

The incremental strains are calculated from the incremental displacements according to the 

strain-displacement relation Equation (5.16) at the midpoint of an increment: 

 

{ } ( ) ( )1 1
2 2

1

2

T

t t

u u

u u u u
ε

  ∂Δ ∂Δ  Δ = +
  ∂ + Δ ∂ + Δ  

 (5.26) 

The generalized plain strain condition is also enforced incrementally.  The stress field, body 

force field, and surface tractions are updated according to: 

 { } { } { }t t tσ σ σ+Δ = + Δ  (5.27) 

 { } { } { }t t tb b b+Δ = + Δ  (5.28) 
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 { } { } { }t t tt t t+Δ = + Δ  (5.29) 

The single-step, fully-implicit “Backward Euler” method is employed to march the system 

through time, and so the residual is evaluated at the new time level and the above definitions of 

stress, body forces, and surface tractions are substituted into the equation: 

 

{ } [ ] { } { }( )
[ ] { } { }( ) [ ] { } { }( )

Tt t t

T Tt t

R B d

N b b d N t t d

σ σ+Δ

Ω

Ω Γ

= + Δ Ω

− + Δ Ω+ + Δ Γ


 

 (5.30) 

Owing to the linearity of the integration operator, the above may be re-cast as: 

 
{ } [ ] { } [ ] { } [ ] { }

[ ] { } [ ] { } [ ] { }

T T Tt t t t t

T T T

R B d N b d N t d

B d N b d N t d

σ

σ

+Δ

Ω Ω Γ

Ω Ω Γ

= Ω− Ω+ Γ

+ Δ Ω− Δ Ω+ Δ Γ

  
  

 (5.31) 

The first line of the above equation is clearly the residual at the start of an increment, which is 

taken as zero by virtue of the finite-element method.  The residual at the end of an increment is 

then expressed as simply: 

 { } [ ] { } [ ] { } [ ] { }T T Tt tR B d N b d N t dσ+Δ

Ω Ω Γ
= Δ Ω− Δ Ω+ Δ Γ    (5.32) 

 Forcing this residual to zero in order to achieve static equilibrium is a nonlinear problem 

requiring iteration, and in this work the Newton-Raphson (NR) method is employed, owing to its 

strong convergence rates.  The NR method uses a Taylor series expansion of the residual at the 

next iteration 1i +  about the solution variable, which in this case is the incremental displacement 

vector { }iuΔ  at iteration i : 

 { } { } { }
{ }

{ } { }

{ } ( )2

1

i

t t

t t t t
i i

u u

R
R R u O u

u
δ δ

+Δ
+Δ +Δ
+

Δ = Δ

∂
= + Δ + Δ

∂ Δ
 (5.33)  

The goal is to force { }1
t t
iR +Δ
+   to zero, and the correction to the incremental displacement vector 

{ }uδΔ  can then be found by solving the following matrix equation: 

 
{ }
{ }

{ } { }

{ } [ ]{ } { }
i

t t

t t
i

u u

R
u T u R

u
δ δ

+Δ
+Δ

Δ = Δ

∂
Δ = Δ = −

∂ Δ
 (5.34) 

where [ ]T  is the tangent operator, calculated by differentiating the residual in Equation (5.32): 
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 [ ] { }
{ } [ ] { }

{ } [ ] { }
{ } [ ] { }

{ }

t t
T T TR b t

T B d N d N d
u u u u

σ+Δ

Ω Ω Γ

∂ ∂ Δ ∂ Δ ∂ Δ
= = Ω− Ω+ Γ

∂ Δ ∂ Δ ∂ Δ ∂ Δ    (5.35) 

The body forces are generally not functions of displacement, so the second term on the right-

hand side is dropped.  Applying the chain rule inside the first term gives: 

 [ ] [ ] { }
{ }

{ }
{ } [ ] { }

{ }
T T t

T B d N d
u u

σ ε
εΩ Γ

∂ Δ ∂ Δ ∂ Δ
= Ω+ Γ

∂ Δ ∂ Δ ∂ Δ   (5.36) 

This form of the tangent operator identifies the “material Jacobian” [ ] { } { }J σ ε= ∂ Δ ∂ Δ , which 

depends on the constitution of the material, discussed shortly.  The derivative of the total strain 

with respect to the displacement field is the matrix of spatial derivatives of the element basis 

functions, [ ]B , which gives: 

 [ ] [ ] [ ][ ] [ ] { }
{ }

T T t
T B J B d N d

uΩ Γ

∂ Δ
= Ω+ Γ

∂ Δ   (5.37) 

The residual, calculated from Equation (5.32), and the tangent operator, calculated from 

Equation (5.37), are used in Equation (5.34) to solve for the correction to the incremental 

displacements.  The improved guess of the incremental displacements are then calculated with: 

 { } { } { }1i iu u uδ+Δ = Δ + Δ  (5.38) 

 This NR procedure is carried out until the infinity norm (maximum absolute value of any 

element) of both the residual { }t tR +Δ  and the displacement correction { }uδΔ  vectors are 

sufficiently small.  Convergence is assumed to be achieved here when the norm of the residual at 

the end of a step is less than 1% of the norm of the time-averaged force in the domain, and when 

the norm of the incremental displacement correction is less than 2% of the norm of the 

displacement increment. 

 The commercial finite element code ABAQUS [1] is used in this work to solve the global 

force balance as defined above, owing to its robust contact algorithms.  The calculation of the 

material Jacobian, stress increment, and decomposition of the total strain into its various parts all 

depend on the constitutive behavior of the material, as discussed next, and are implemented into 

ABAQUS through the user subroutine UMAT. 

 At high temperatures, the mechanical response of solid steel is sensitive to the rate at 

which the material is loaded, commonly described as elastic-viscoplastic behavior.  The 
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mechanical effects can be decomposed into recoverable elastic behavior (associated with 

chemical bond stretching) and irrecoverable inelastic behavior.  The inelastic effects include both 

rate-insensitive plasticity as well as rate-sensitive creep, although at high temperatures they are 

difficult to distinguish [24].  Following the (Kröner-) Lee multiplicative decomposition of the 

deformation gradient [15,20], the deformation of the solidifying shell, at a higher level of 

abstraction, is composed of mechanical deformation gradients mechF  and also thermal 

deformation gradients 
thF : 

 th mech= ⋅F F F  (5.39) 

The development here is based on this general equation, but it is worth noting that with both 

small strains and small rotations, the above would simplify to: 

 th mech= +ε ε ε  (5.40) 

where thε  is the thermal strain tensor and mechε  is the mechanical strain tensor. 

 All materials exhibit an effect known as thermal expansion, which corresponds to the fact 

that at different temperatures the constituent molecules vibrate and move by different amounts, 

and thus have different average spacing at equilibrium with no load.  This effect results in 

temperature-dependent mass density ( )Tρ .  Most materials, including steel, contract in size 

with decreasing temperature, which generates compressive (negative) thermal strain.  Another 

effect that behaves like thermal strain is the change in molecular lattice spacing with changes in 

crystal structure, such as the solid-state phase change from ferrite (alpha or delta) to austenite.  

The coefficient of thermal expansion Eα  can be calculated from the mass density to include both 

of these effects according to: 

 ( ) ( )
( )

3
1

1
ref

E
ref

T
T

T T T

ρ
α

ρ

 
 = −
 −
 

 (5.41) 

where refT  is a reference temperature, chosen in this work to be the solidus temperature of the 

steel.  The coefficient of thermal expansion is used to calculate the isotropic thermal deformation 

gradient according to: 

 ( ) ( )( )
0

Tth th th th
ET

T dTα= + = + F R I ε R I I  (5.42) 
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where 0T  and T  are the initial and current temperatures of a material point, and thR  is a rotation 

that accompanies the thermal deformation.  However, since the thermal expansion is assumed to 

be isotropic, this thermal rotation has no effect on the deformation gradient to within the order of 

the small-strain approximation, so: 

 ( )( )
0

1
Tth

ET
T dTα= + F I  (5.43) 

The thermal deformation is treated incrementally, so: 

 th thΔ = + ΔF I ε  (5.44) 

where the incremental thermal strain thΔε  is calculated by [1]: 

 ( )( ) ( )( )( )th t t t t t t
E ref E refT T T T T Tα α+Δ +ΔΔ = − − −ε I  (5.45) 

Note that this definition ensures that no thermal strain will be generated at initial temperatures 

different from the chosen reference temperature.  The incremental thermal strain is subtracted 

from the total strain so that the UMAT subroutine is only responsible for dividing the remaining 

mechanical strain into its elastic and inelastic parts. 

 The velocity gradient tensor at a material point is defined as: 

 1−= ∇ = ∇ = ⋅L u v F F  (5.46) 

The thermal and mechanical deformation gradients define their respective velocity gradients: 

 ( ) 1th th th −
= ⋅L F F  (5.47) 

 ( ) 1mech mech mech −
= ⋅L F F  (5.48) 

though in general they do not add directly to form the total velocity gradient. In fact, 

 ( ) ( )( )( ) ( )1 1 1 1th th th mech mech th th th mech th− − − −
= + ⋅ = +L F F F F F F L F L F   (5.49) 

However, since the thermal deformation gradient is isotropic, the above reduces to just: 

 th mech= +L L L  (5.50) 

The velocity gradient tensor can be decomposed into its symmetric part D , called the rate-of-

deformation tensor, and its skew-symmetric part W , called the spin tensor: 

 = +L D W  (5.51) 

 ( )1

2
T= +D L L  (5.52) 
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 ( )1

2
T= −W L L  (5.53) 

With the simplified total velocity gradient, the decomposition into thermal and mechanical 

components is simply: 

 th mech= +D D D  (5.54) 

 th mech= +W W W  (5.55) 

with isotropic thermal behavior, the thermal spin tensor is zero, giving: 

 mech=W W  (5.56) 

 Along similar arguments as above, the mechanical deformation gradient can be 

decomposed into its elastic elF  and inelastic ieF  parts: 

 
mech el ie= ⋅F F F  (5.57) 

Again, this development is based on this general equation, but it is worth noting that for small 

strains and small rotations, the above would simplify to: 

 mech el ie= +ε ε ε  (5.58) 

where elε  is the elastic strain tensor and ieε  is the inelastic strain tensor.  The elastic deformation 

gradient is calculated from: 

 ( )el el el= +F R I ε  (5.59) 

where elR  is a rotation accompanying the elastic deformation.  The elastic behavior of the 

material is assumed to be isotropic in this work, so this rotation has no effect on the elastic 

deformation gradient to within the order of the small-strain approximation, leaving just: 

 el el= +F I ε  (5.60) 

The assumption of isotropic elasticity allows the velocity gradient decomposition into the rate-

of-deformation and spin as follows: 

 th el ie= + +D D D D  (5.61) 

 el ie= +W W W  (5.62) 

Isotropic small-strain elasticity has a zero spin tensor, so the total continuum spin has a 

contribution only from the inelastic effects: 

 ie=W W  (5.63) 
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 With small strains, spatial derivatives are approximately equal in the initial and current 

configurations, and the rate-of-deformation is identified as the strain rate, which can be 

calculated with simple time derivatives of the small strain tensor: 

 th el ie= + +ε ε ε ε     (5.64) 

where ε , thε , elε , and ieε  are the total, thermal, elastic, and inelastic strain rate tensors, 

respectively.  According to Hooke’s Law, the stress is proportional to the elastic strain via the 

fourth-order stiffness tensor D : 

 : el=σ εD  (5.65) 

For isotropic linear-elastic materials, a suitable model for most metals under small strains, the 

stiffness tensor is calculated by: 

 
2

2
3

Kμ μ = + − ⊗ 
 

I ID I  (5.66) 

where μ  is Lamé’s second constant, also known as the shear modulus, K  is the bulk modulus, 

and I  is the fourth-order identity tensor.  The shear and bulk moduli are in general functions of 

temperature, so the time derivative of the Cauchy stress tensor is: 

 : : : :el el el elT

t T

∂ ∂ = + = +  ∂ ∂ 
σ ε ε ε εD

D D D   (5.67) 

In this work, the effect of the temperature dependence of the stiffness tensor is neglected for the 

sake of simplicity, and improving this simplification is left for future work.  Solving Equation 

(5.64) for the elastic strain rate then gives: 

 ( ): th ie= − −σ ε ε εD     (5.68) 

 The equivalent inelastic strain rate ieε  for the steel grades considered here is assumed to 

be a function of temperature T , equivalent inelastic strain ieε , equivalent stress σ , and carbon 

composition C , as discussed later.  The equivalent strain and stress are calculated according to: 

 
2

:
3

ie ie ieε = ε ε  (5.69) 

 
3

:
2

σ = σ σ  (5.70) 

The solidifying steel is assumed to harden isotropically, and is treated with standard J2-plasticity 

theory (defined by the von Mises yield surface and normality hypothesis with the Prandtl-Reuss 
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flow rule) [25].  The inelastic strain rate tensor is thus recovered from the equivalent inelastic 

strain rate by: 

 
3

2

ie
ie ε

σ
′=ε σ


  (5.71) 

where ′σ  is the deviatoric Cauchy stress tensor, calculated by: 

 ( )1
tr

3
′ = −σ σ σ I  (5.72) 

and ( )tr σ  is the trace of the Cauchy stress tensor.   In this work, the stress and strain increments 

are obtained by solving a pair of coupled ordinary differential equations (valid for isotropically 

hardening materials) in terms of the equivalent stress and strains [26]: 

 ( ) ( )( )3 , , ,
t t t tt t t t ie t t t t ieT C tσ σ μ ε σ ε
+Δ +Δ+Δ ∗ +Δ +Δ +Δ= − Δ  (5.73) 

 ( ) ( ) ( )( ), , ,
t t t t tie ie ie t t t t ieT C tε ε ε σ ε
+Δ +Δ+Δ +Δ= + Δ  (5.74) 

where ( )t t
σ

+Δ∗  is the effective elastic predictor stress that is calculated assuming that the entire 

strain increment was elastic.  The solution of this pair of equations uses the methodology 

outlined in the work of Koric and Thomas [17].  This approach helps the iterative solution 

process make better guesses for the solution with larger time steps.  This gives better overall 

computational efficiency than alterative approaches, including the built-in method in ABAQUS, 

which take more time steps of smaller size.  The inelastic strain increment is calculated by: 

 ie ie tε εΔ = Δ  (5.75) 

The elastic strain increment is calculated by subtracting the inelastic strain increment from the 

total strain increment, which completes the definition of the material response to loading. 

  

5.3. Mechanical Material Properties 

 The mechanical governing equations (continuum or finite-element) require the 

specification of thermophysical properties, including the coefficient of thermal expansion and 

elastic modulus, and the specification of a constitutive relationship between inelastic strain rate 

and stress.  These properties in real materials exhibit a dependence upon temperature, which 

must be known accurately for realistic simulations. The phase fractions are calculated as 

described in Section 4.3.1 for the grade described in Table 4.1. 
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5.3.1. Coefficient of Thermal Expansion 

 The coefficient of thermal expansion is calculated from the temperature-dependent 

density with Equation (5.41), so it follows that a model of the density is necessary. Harste [8] fit 

equations to several measurements of density across a wide range of temperatures: 

 7965.98 0.618Tρ = −  (5.76) 

 8010.71 0.4724Tδρ = −  (5.77) 

 8105.91 0.5091Tγρ = −  (5.78) 

 6 27880.76 0.3244 27.461 10T Tαρ
−= − − ⋅  (5.79) 

Instead of the Harste model for the liquid steel, in this work the empirical model of Jimbo and 

Cramb [12] is used, which is dependent upon both temperature and composition: 

 ( ) ( )( )7100 73.2 0.828 0.0874 1550C C Tρ = − − − −  (5.80) 

Note that here densities are given in kg/m³, temperatures are given in ºC, and carbon composition 

is given in % wt. C.  In accordance with the isotropic thermal expansion that has been assumed 

for this work, the density mixture model assumes that the mass of a control volume is the sum of 

the mass of its constituents: 

 mix g g g gδ δ γ γ α αρ ρ ρ ρ ρ= + + +   (5.81) 

for volume fractions ig .  However, it is more convenient to use, at the cost of only a small error, 

to use the mass fractions if  of each phase in the mixture rule for mass density: 

 mix f f f fδ δ γ γ α αρ ρ ρ ρ ρ= + + +   (5.82) 

Figure 5.2 shows the temperature-dependent density, and the corresponding thermal expansion 

coefficient is given in Figure 5.3.  The reference temperature is taken as the solidus temperature. 

 

5.3.2. Elastic Constants 

 Many researchers have measured the elastic modulus of high-temperature steels, but the 

model adopted here is based on the tensile test measurements of Mizukami et al. [28], and 

Poisson’s ratio is taken as a constant ν  = 0.3.  At elevated temperatures, the usual method of 

determining the elastic constants by dividing stress by the strain in a tensile tests will 

underpredict the values of the elastic constants because of increased creep in the tensile 
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specimen.  Ultrasonic methods have been developed to calculate the elastic constants by 

measuring vibration frequencies of the specimen at high temperatures, and then calculating the 

elastic constants based on the wave speed of the solid material.  The ultrasonic methods are more 

accurate at high temperatures, but since the creation of the constitutive models used in this work 

[19,40] also used the Mizukami model, so also must the finite element models used here to 

recreate the intended behavior of the constitutive models.  The data of Mizukami et al. is plotted 

in Figure 5.4, with the data points inset in the graph.  The value of the elastic modulus is 

assumed to fall to 14 GPa at the solidus temperature and then fall again to 10 GPa at and above 

the liquidus temperature [17,24], and for temperatures between the solidus temperature and the 

highest data point of Mizukami et al., the elastic modulus is linearly interpolated.  
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5.3.3. Constitutive Behavior 

 The constitutive model that describes the relationship between stress and strain is likely 

the most important aspect of modeling the high-temperature behavior of solidifying steel.  At 

elevated temperatures, the phenomenon known as creep dominates the mechanical response of 

most metals.  A creep test is performed by measuring the increasing deformation of the solid 

over time while under a constant load, and several types and mechanisms of creep have been 

observed.  The strength of delta ferrite is nearly a full order of magnitude less than austenite, so it 

is necessary to include separate models for each phase to correctly model the material behavior.  

For the current work, the constitutive models adopted include that of Zhu [40] for delta ferrite 

and that of Kozlowski (model III) [19] for austenite.  The Kozlowski model III is given as: 
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3

2 1

1 exp
ffie ie ie

C

Q
f f

RTγε σ ε ε
−   = − −     

  (5.83) 

 3
1 130.5 5.128 10f T−= − ⋅  (5.84) 

 3
2 0.6289 1.114 10f T−= − + ⋅  (5.85) 

 3
3 8.132 1.54 10f T−= − ⋅  (5.86) 

 ( )3 210 46.55 71.4 120.0Cf C Cγ = ⋅ + ⋅ + ⋅  (5.87) 

where 1f , 2f , 3f  are temperature-dependent parameters, Cfγ  is a composition-dependent 

parameter, Q  = 371.24 J/mol is the molar Zener-Hollomon parameter activation energy, and R  

= 8.314 J/(mol·K) is the gas constant.  The Zhu model is given as: 

 
( ) ( )

( )1

5.52
0.1

300 1 1000

n

ie
mie

CT fδ

σε
ε−

=
+

  (5.88) 
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 60.3495 94.156 10m T−= − ⋅  (5.89) 

 30.06166 0.1617 10n T−= − + ⋅  (5.90) 

 3 0.055613.678 10Cf Cδ
−= ⋅  (5.91) 

where m  and n  are temperature-dependent parameters and Cfδ  is a composition-dependent 

parameter.  Both models give strain rates in s-1 for temperatures in K, stress in MPa, carbon 

composition in % wt. C, and strains in raw values (not percent).  Figure 5.5 shows the response 

of the steel used in this work in a simple tension test with 4 110 sε − −=  at 1400 º CT = , a 

temperature at which both delta ferrite and austenite are present. 
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 Over the applicable temperature ranges, the austenite strain rate increases roughly in 

proportion with 6σ  and 4ε  while the delta ferrite strain rate increases with 5σ  and 1ε , so the 

phases are both extremely sensitive to stress.  However, the austenite is much more sensitive to 

the current inelastic strain than the delta ferrite.  Both models are clearly very nonlinear and 

require either very small time step sizes or intelligent guessing during the iterative solution 

procedure, where the latter is adopted in this work after Koric and Thomas [17].  During the 

delta-ferrite-to-austenite phase change, the delta-ferrite model is used if the mass fraction of delta 
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ferrite is over 10%, where the assumption is that the softer material dominates the net mechanical 

behavior.  Improving upon this mixture law is left for future work. 

 A liquid is material that deforms continuously under an applied shear loading.  However, 

in the context of a solid mechanics numerical method this will tend to cause problems with the 

solution process, and an artificial shear stiffness is given to the liquid material to avoid numerical 

instability.  The “liquid” is thus modeled with a small elastic modulus and small yield stress.  

Previous researchers have modeled the inelastic behavior as a solid with extremely high creep-

rate [24] or as a perfectly-plastic solid [17].  The latter approach is adopted here, with a yield 

stress of 10 kPa, to avoid convergence problems within ABAQUS, and this “liquid” behavior is 

applied any time the mass fraction of the liquid in a control volume is greater than zero. 

 

5.4. Model Verification with Analytical Solution 

 Verification of the finite-element thermal-mechanical model formulation is performed by 

comparing with the analytical solution of Weiner and Boley [37], which considers a solidifying 

semi-infinite plate constrained against bending with temperatures in the solid material described 

by Equation (4.65).  The material is assumed to exhibit elastic-perfectly-plastic behavior, with a 

constant elastic modulus and a yield stress that decreases with temperature to zero in the liquid: 

 ( ) , ,
wall

Y Y wall Y wall
m wall

T T
T

T T
σ σ σ

 −= −  − 
 (5.92) 

where ,Y wallσ  is the yield stress at the wall temperature and ( )Y Tσ  is the yield stress at 

temperature T .  Without derivation, the solution to the stress problem is given below.  The 

material shifts from a plastic region on the surface, to an elastic region in the center of the 

solidified material, to a plastic region just below the solidification front.  The calculation of the 

distance of these two transition points from the surface require the solution of a pair of nonlinear 

equations for the variables 1ζ  and 2ζ : 

 
( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
2

1 1 1 2

2 2 2
2 1

2 1 exp

1 exp 1 exp exp 1

ψ ζ ζ ζ ζ

ψ ζ ψ ζ ψ φ

− − − =

+ − − − − − − +
 (5.93) 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 1 2

1 2

2 1 exp ln

1 erf (1 )erf 2 erf

ψ ζ ζ ζ ζ π

ψ ζ ψ ζ ψ φ

− − =

− − + +
 (5.94) 
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where φ  is the length-time proportionality constant from the thermal problem calculated from 

Equation (4.73), and ψ  is a scaling constant calculated from: 

 
( )

( )
,1 Y wall

E sol m wE T T

ν σ
ψ

α
−

=
−

 (5.95) 

The depth below the surface of the plastic-elastic transition 1ξ  is: 

 ( ) ( )1 1 2min , tξ ζ ζ δ=  (5.96) 

where ( )tδ  is the shell thickness as a function of time, calculated from Equation (4.63). 

Similarly, the depth below the surface of the elastic-plastic transition 2ξ  is: 

 ( ) ( )2 1 2max , tξ ζ ζ δ=  (5.97) 

The stress in the surface plastic region is then: 

 
( )

( ),

erf 4
1

erf

T

Y wall

x tα
σ σ

φ

 
 = −
 
 

 for 10 x ξ≤ ≤  (5.98) 

The stress in the middle elastic region is: 

 
( ) ( ) ( )

( ) ( )

121
1 1

,

42
1 erf exp ln

erf erf 4

T

Y wall

T

t

x

x t

ζ αζψ ζ ζσ πσ
ψ

ψ φ α

   
  − − − +    =    
 − 

 for 1 2xξ ξ≤ ≤  (5.99) 

The stress in the subsurface plastic region, closest to the solidification front, is given by: 

 
( )

( ),

erf 4
1

erf

T

Y wall

x tα
σ σ

φ

 
 = −
 
 

  for ( )2 x tξ δ≤ ≤ (5.100) 

Finally, the stress in the liquid is zero: 

 0σ =   for ( )t xδ ≤ < ∞  (5.101) 

This completes the definition of the elastic-perfectly-plastic stress solution for the solidification 

of an infinite plate.  

 The surface of the shell quenches immediately the thermal contraction tends to cause the 

body to shrink locally.  The surface shrinks stress-free in the first few moments of solidification 

owing to the lack of constraint imposed by the neighboring liquid material.  The material closer 

to the solidification front, then solidifies and tends to shrink.  As time progresses, these internal 
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points point will cool more and thus will shrink more, relative to the surface region which will 

stay relatively constant.  This tends to generate compression at the surface. The constraint against 

bending requires that the net out-of-plane normal stresses are zero, which results in subsurface 

tension to balance the surface compression, giving the characteristic curves shown below. 

 In addition to the properties and parameters provided in Table 4.2 for the thermal stress 

problem, the required parameters for the stress solution are summarized in Table 5.1.  The 

numerical solution is accommodated by decreasing the yield stress to a small value rather than 

zero.  The domain and boundary conditions are illustrated in Figure 5.6.  The domain and mesh 

used is identical to the 300-element, 602-node mesh used for the heat transfer verification, except 

using the standard CPEG4 generalized plane strain elements (with no extra features) in 

ABAQUS [1].  The constraint against bending in the out-of-plane directions is treated by 

defining a reference node with constrained rotational degrees of freedom, forcing xc  and yc  in 

Equation (5.22) to zero.  The constraint against bending in analysis plane is treated by fixing the 

perpendicular displacements of the top edge, and constraining the perpendicular displacement of 

the bottom edge to be identical, thus enforcing a second generalized plane-strain condition. 

 

Table 5.1. Properties Used in Solidification Stress Test Problem 

Property Symbol Value Units 

Coefficient of Thermal Expansion Tα  20·10-6 (m/m)/K 
Poisson’s Ratio ν 0.3 -- 
Elastic Modulus in Solid solE  40.0 GPa 

Elastic Modulus in Liquid liqE  14.0 GPa 

Yield Stress at Wall Temperature ,Y wallσ  20.0 MPa 

Yield Stress at Solidus Temperature ,Y solσ  35.0 kPa 

 

Figure 5.6. Thermal-Stress Test Problem Domain and Boundary Conditions 

Stress-
Free

Equal perpendicular displacement 

Zero perpendicular displacement 

Zero perpendicular 
displacement 
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 Figures 5.7 and 5.8 show a comparison of the analytical and numerical solutions of the 

test problem for several times and several points in space, respectively.  The stress components 

plotted are in the analysis plane, perpendicular to the longer sides of the domain.  The numerical 

solution matches the analytical solution for the most part, with the exceptions being around the 

solidification front and in regions of high spatial gradient of stress.  The time history plots 

illustrate this better with the transition from elasticity to plasticity.  A convergence study of this 

test problem has been performed elsewhere [24,40].  This study showed that a mesh like the one 

in this study with 0.1-mm elements using a time step of 0.01 seconds lowers the maximum errors 

to about 1% or less. 
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5.5. Shell Model Setup 

 A finite element model of the solidifying shell was constructed to investigate the effect of 

the funnel mold geometry on the mechanical behavior of the shell.  The shell domain is identical 

to that of the thermal problem described in Chapter 4, including the shape and size, two-fold 

symmetry, and the assumption of a two-dimensional slice that moves at the casting speed down 

the mold, as discussed in Sections 4.2. and 5.2.  The material properties are defined as discussed 

above for a 0.045 %wt. C steel.  The temperature field at any point in time is recovered from the 

results of the thermal analysis. 

 The analysis domain and boundary conditions are shown schematically in Figure 5.9.  

The contacting surfaces between the shell and the mold are treated with a “softened” exponential 

pressure-penetration algorithm within ABAQUS [1], and the coefficient of friction is taken as 

fμ  = 0.11 after measurements of mold slag on copper [27].  The first 5 mm of the mold is 

modeled so that contact surfaces may be defined to enforce the changing funnel shape with 



 

  103

distance down the mold.  The mold is the stiffer material, so it is defined as the master contacting 

surface in ABAQUS.  All nodes on the mold are given a displacement boundary condition 

(except for the appropriate symmetry planes) that reproduce the shape of the funnel as seen by 

the traveling analysis plane.  The depth of the analysis plane below the top of the mold z  is 

calculated from the time using Equation (4.16), and then the applied displacement is calculated 

from the appropriate function s  in Chapter 2 that describes the hot face of the mold: 

 ( ) ( ), ,y mu s x z s x z= −  (5.102) 

This displacement function for Mold A (cf. Chapter 2) is plotted in Figure 5.10. 

 The symmetry planes have the appropriate zero normal displacement boundary condition.  

The analysis domain does not include the entire quadrant of the two-dimensional slice plane; the 

region closest to the center of the plane will always be in the liquid state while the analysis plane 

is in the mold, so inclusion in this analysis is not necessary and would only serve to increase the 

computational cost and cause numerical problems.  The always-liquid inner surface is modeled 

as stress-free in this work, which allows this region to shrink as it would naturally.  The 

ferrostatic pressure is applied as a uniformly-distributed load on the shell-mold interface, pulling 

the stiff solid shell outward, rather than pushing on the soft solidification front, which is almost 

equivalent, but much less stable.  The magnitude of the ferrostatic pressure p  is calculated 

according to: 

 liqp gzρ=  (5.103) 

where g  is the acceleration due to gravity and liqρ  is the density of the liquid steel at the 

liquidus temperature.  Furthermore, as illustrated in Figure 5.11, the application of the load is 

delayed by about one second in order to allow the outermost row of elements to solidify to 

improve convergence at early times. 

 The mesh used in the mechanical analysis is identical to that used for the appropriate 

thermal analysis for a given funnel geometry, except that the element type are all generalized 

plane strain, four-node, “fully integrated” (2×2 Gaussian quadrature) bilinear quadrilateral finite 

elements like those used for the stress validation problem.  Node and element counts are given in 

the discussion of results. 
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Figure 5.9. Schematic of Computational Domain and Boundary Conditions 
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5.6. Shell Model Results 

 The results of the mechanical model investigation of the solidifying shell are presented 

below, with consideration according to the through-thickness and circumferential directions.  

Stress and strain components reported are always in the direction parallel to the surface of the 

mold, i.e., perpendicular to the heat flow direction. 

 

5.6.1. Through-Thickness Direction 

 The stress profiles through the thickness of the shell at increasing times are shown in 

Figure 5.12.  The stress profile at mold exit with the different phase regions labeled are given in 

Figure 5.13.  The stress histories at a few points beneath the surface are shown in Figure 5.14.  

Except for the first 0.5 seconds, the surface is always in compression, and the subsurface regions 

are always in tension, resulting in zero net stress through the thickness of the shell.  The liquid 

region always has almost zero stress (equal to the small yield stress defined in the liquid region), 

and the delta ferrite region unable to sustain much stress.  A considerable load is developed in 

the steel once the austenite phase is formed at 10 % mass fraction delta remaining.  The 

circumferential stress field contours in the casting direction have been reconstructed in Figure 

5.15.  This figure shows clearly that the compressive region at the surface grows to only about 2 

mm thick within the mold.  Internal cracks are most likely in weak inter-dendritic regions found 

outside of this region. 
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Figure 5.12. Through-Thickness Shell Stresses Figure 5.13. Shell Stresses with Phases Delineated 
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Figure 5.14. Shell Stress Histories Figure 5.15. Stress Field in Casting Direction 
 

5.6.2. Circumferential Direction 

 More important information for this project on funnel design can be gained by examining 

the variation in stress and strain around the mold perimeter. Figure 5.16 shows the stress on the 

surface as a function of distance from the centerline at several times for Mold A.  The surface 

stress becomes slightly more compressive as the distance from the center increases, which is 

likely related to frictional effects reducing the compression imparted to the shell from excessive 

narrow face taper.  The more striking feature is the increase in compressive stress in the “inside 

curve” region and the corresponding decrease in compressive stress in the “outside curve” 

region.   

 Recalling the surface temperatures in Figure 4.18, the localized increase and decrease in 

stress follow the respective increase and decrease in temperature.  Examining the computed heat 

flux on the surface in the curved regions, the inside curve region of Mold A sees a 0.5 % increase 

in heat flux and the outside curve region sees as 0.5 % decrease in heat flux.  A series of one-

dimensional thermal-stress simulations (similar to the validation problems, but with the realistic 

properties and boundary conditions) were performed with the applied heat flux increased and 

decreased to determine if the change in temperature alone causes the resulting change in stress.  

The resulting stress in the inside curve region was 0.15 MPa more compressive than with the 
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nominal conditions for the duration of the simulation.  Similarly, the stress in the outside curve 

region was 0.15 MPa less compressive than the nominal conditions.  These were observed to 

decrease with decreasing variation of heat flux, i.e., with increasing horizontal funnel radius.  

These deviations in stress are much smaller than the approximately 2 MPa variations observed in 

Figure 5.16, indicating that another effect is responsible for the observed stress profiles. 
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Figure 5.16. Shell Surface Circumferential Stresses at Different Times 
 

 Examining the stress on the solidification front, found by taking the maximum through-

thickness stress at several points along the perimeter, reveals similar trends but occurring in the 

opposite direction, as shown in Figure 5.17.  The combination of Figures 5.16 and Figure 5.17 

indicates that the mechanical effect of the funnel mold on the solidifying shell is to induce 

bending behavior in the transition region.  The difference between the bending effect 

experienced by the shell in the inside curve and outside curve regions is the “sign” of the 

bending effect; the magnitude of the strain is equal, though the shell surface on the inside curve 

is subject to compression and the shell surface in the outside curve is subject to tension.  The 

magnitude of the internal stresses is naturally smaller, owing to the lower strength of the hotter 

steel there, relative to the colder and stronger surface. 
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Figure 5.17. Shell Solidification Front Circumferential Stresses at Different Times 
 

 To investigate the effect of funnel geometry on these variations in the circumferential 

stress, a parametric study was performed with several hypothetical geometries based on the A-

type design presented in Chapter 2.  All cases use a mold length of 1100 mm, a funnel length of 

850 mm, and a casting speed of 5.5 m/min.  The geometry, model sizes, and run times, using 2 

CPUs on a Dell PowerEdge 1750 Linux Cluster with Intel Xeon 3.2 GHz processors, are 

summarized in Table 5.2.  Figures 5.18 and 5.19 show the circumferential stress profiles on the 

surface and solidification front for the different cases.  These results are all extracted from the 

simulations at 500 mm below the meniscus, or halfway down the length of the mold.  For the 

most part, the difference in stress between the flat regions and the transition regions decreases 

with increasing funnel width and decreasing crown, i.e., the effect of the funnel geometry on the 

mechanical response of the shell reduces as the funnel approaches a parallel mold, similar to the 

effect of the geometry on the thermal behavior of the shell.  The same trends are observed in the 

study of B-type molds.  The exception to the trend is with the case with the deep crown, in which 

the effective taper of the funnel is so large that the narrow face causes more net compressive 

behavior in the shell, as discussed next.  Similar to the thermal response, the trends indicate that 

the variation in stress is proportional to the horizontal radius, which will be discussed the next 

section. 
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Figure 5.18. Effect of Funnel Geometry on Surface Circumferential Stress 
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Table 5.2. Summary of Funnel Geometries Simulated for Mechanical Behavior Study 

Case Description 
Funnel Geometry (mm) Simulation Data 

iw  0w  Tc  Bc  Nodes Elements Runtime (hr) 

1 Base Case 130 375 23.4 8 34664 17258 21.0 
2 No Inner Flat 0 375 23.4 8 34667 17260 22.8 
3 Wider Funnel 130 475 23.4 8 34719 17286 19.8 
4 Shallow Crown 130 375 13 8 34664 17258 20.3 
5 Deep Crown 130 375 48 8 34664 17258 19.5 

 

 All of the above simulations were performed with the same strand width of 1200 mm, 

and the applied 1.0 %/m (percent per meter of perimeter per meter of effective mold length, 

taken as 1000 mm) linear narrow face taper based on that width is then 6 mm per side.  The 

geometry of the funnel actually increases the total perimeter length of the slab, so changing the 

sizes of the funnel geometric features effectively changes the taper.  This needs to be accounted 

for when designing taper practices to avoid the issues that arise with excessive narrow face taper, 

namely, squeezing the shell.  For example, considering funnel geometries based on the B-type 

design presented in Chapter 2, crowns of 20, 30, and 40 mm account for 1.30, 3.23, and 5.92 mm 

of perimeter length per wide face that must be considered in the taper calculations.  Including the 

applied 6 mm of taper from the narrow face, these molds have effective tapers of 1.1, 1.3, and 

1.5 %/m, which can induce a considerable amount of compressive behavior on the solidifying 

shell, and thus increasing the risk for shell buckling producing longitudinal depressions, cracks, 

and breakouts.  The extra compression is somewhat evident in the stress profiles in Figures 5.18 

and 5.19, but is more clear in examining the average circumferential stress through the thickness 

of the shell as a function of distance from the center of the wide face, plotted in Figure 5.20 for 

the B-type mold with the three crown sizes mentioned above at 500 mm below the meniscus.  At 

this particular location, the narrow face is just starting to make good contact with the shell for the 

20- and 30-mm crowns, and the average stress anywhere in the shell is slightly tensile as a result 

of the ferrostatic pressure pulling the shell towards the narrow faces when a substantial gap is 

open between the shell and mold due to insufficient narrow face taper.  Owing to the increased 

perimeter length change with the deeper crown, the shell in the 40-mm crown case is entirely 

under net compression, increasing the risk for buckling-related failure mechanisms, discussed 

later.  The tendency of the average stress to become more compressive with increasing distance 

away from the center of the wide face is likely related to the difference in accumulated frictional 
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effects at different points around the perimeter of the shell, but deserves further study before any 

solid claims can be made. 
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Figure 5.20. Average Circumferential Stress at 500 mm Below Meniscus 

 

 The average circumferential stress becomes more compressive with increasing distance 

below the meniscus, as shown in Figure 5.21, which plots the average stress at the outer curve-

outer flat transition point at 475 mm away from the centerline.  These plots are typical of the 

average stress at any point around the perimeter of the wide face (except the corners), owing to 

the fact that the bending mechanism has no effect on the average stress.  The average stress is 

negligible higher in the mold with the small applied taper and high creep rates in the shell.  As 

the narrow face squeezes the shell more with increasing distance down the mold, the average 

stress becomes more compressive.  The wiggles in the figure are associated with the jumps in hot 

face position as seen by the slice domain moving through the oscillating mold.  Although all 

three cases do end at the same average stress (because all geometries are identically flat at mold 

exit), it is important to note that the deeper crowns become more compressive higher in the mold 

when the shell is thinner and can withstand less of a buckling load.  This suggests that deeper 

crowns might be more prone to cracks and other problems associated with longitudinal 

depressions.   
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5.7. Analytical Bending Model 

 As mentioned above, the main effect of the funnel geometry on the solidifying shell is to 

induce a bending mechanical response in the funnel transition region.  This effect is unique to 

funnel molds, since although other shapes may have changing hot face profiles from taper or a 

casting radius, they do not change position by several centimeters as is common in funnel molds.  

This section will not only explain the bending mechanism in terms of elementary solid 

mechanics [11], but will derive a simple analytical model that can predict the strain results of the 

two-dimensional elastic-viscoplastic finite element models with surprising accuracy. 

 Consider an initially straight beam of length sw  and thickness δ  in the coordinate system 

defined in Figure 5.22.  The elementary beam theory employed here considers only one 

component of stress, xxσ , with all others set to be zero.  This beam is representative of the shell 

in contact with the wide face of the mold and in this case xxσ  is the circumferential stress in the 

shell, which is most important to longitudinal crack formation, discussed in the next section.  The 

“neutral axis” of the beam must be determined as a part of this analysis, and is defined as the 

region of the cross section where xxσ  = 0, as sketched in Figure 5.23.  The neutral axis 

experiences no change in length during bending of the beam, and is located by integrating the 
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stress distribution above and below the neutral axis and determining the constants to cause the 

resultant forces to balance: 

 
lower upper

xx xxA A
dA dAσ σ=   (5.104) 

For a linear-elastic material with constant elastic modulus, the typical approach is to assume that 

the axial stress varies linearly with the y -coordinate by some constant 0c : 

 0xx c yσ =  (5.105) 

This assumption results in the neutral axis and centroidal axis falling coincident upon each other.  

However, considering the beam as a model of the solidifying shell, the assumption of constant 

elastic modulus is unreasonable.  As observed in Figure 4.13, the temperature through the 

thickness of the shell is not constant, and Figure 5.4 illustrates that the elastic modulus of the 

solidifying steel decreases with increasing temperature.  Since the material closer to the surface 

is much stronger and stiffer than the material closer to the solidification front, the neutral axis 

will fall just a few millimeters beneath the surface, even when the shell is over a centimeter in 

thickness, as illustrated in Figure 5.12 for the case without bending.  Thus, to simplify the 

analysis at hand, the neutral axis will be assumed to always lie on the surface of the solidifying 

shell, but the analysis will nevertheless proceed as in the general case. 

 

Figure 5.22. Beam Schematic and Coordinate System 
 

Figure 5.23. Bending Stress Profile Across Beam Section 
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 The axial strain profile through a cross-section is determined by the local radius of 

curvature about which the beam is bent.  Consider a beam segment of undeformed thickness xΔ  

anywhere along the beam axis, as shown in Figure 5.24.  A line segment on the neutral axis of 

the beam will have length xΔ  both before and after deformation, while a line segment at some 

elevation y  from the neutral axis has original length sΔ  and deformed length s′Δ  upon bending, 

as shown in Figure 5.25.  The axial strain at the elevation y  is then: 

 
0

limxx x

s s

s
ε

Δ →

′Δ −Δ=
Δ

 (5.106) 

 

 

Figure 5.24. Undeformed Beam Element Figure 5.25. Deformed Beam Element 
 

 The elementary beam theory requires that planar cross-sections remain planar after 

deformation, or that no warping occurs.  The beam segment considered above will then deform 

so that it sides rotate to form a well-defined radius of curvature R , center point C , and 

subtended angle θΔ , as shown in Figure 5.25.  Simple geometry gives that the original length of 

the line segment of interest, which is initially equal to the beam segment width xΔ , is 

s R θΔ = Δ , and the deformed length is ( )s R y θ′Δ = − Δ .  Substituting these lengths into the 

above definition of axial strain gives: 

 
( )

0
limxx

R y R

Rθ

θ θ
ε

θΔ →

− Δ − Δ
=

Δ
 (5.107) 

which simplifies, even without taking the limit, to just: 

Neutral Axis 

xΔ  

y  

sΔ  

C

Neutral Axis

s′Δ

θΔ

R

y  
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 xx

y
y

R
ε κ= − = −  (5.108) 

where here y  is the distance from the neutral axis, R  is the local radius of curvature, and 

1 Rκ =  is the curvature.  This axial strain is defined only in terms of the geometry, and so can 

only be described as applied mechanical strain, neither elastic or inelastic.  In general, the 

curvature of a line ( )s x  can be calculated from: 

 

2

2

3
2 2

1

d s
dx

ds
dx

κ =
  +     

 (5.109) 

For the analysis at hand, the line ( )s x  is the shape of the funnel mold hot face, but it can also be 

the deformed shape of the beam, which is usually recovered by assuming that the slope of the 

line is small, giving 2 2d s dxκ = , and integrating.  In the case of the “tangent circles” funnel 

design of Chapter 2, this assumption is not necessary since the curvature is just the inverse of the 

horizontal funnel radius.  The circumferential strain due to bending in the tangent circles design 

is then simply: 

 

0 0

1

1

0

i

h i m
xx

h m o

o s

x w

r w x w
y

r w x w

w x w

ε

≤ ≤
− ≤ ≤= −  ≤ ≤
 ≤ ≤

 (5.110) 

 One qualification that must be noted at this point is that the strain predicted with this 

equation is the strain that is developed from bending an initially straight beam into whatever 

configuration has the value hr .  This qualification can be overcome by calculating the strain 

developed in bending a straight beam of some thickness into the mold profile at the meniscus, 

calculating the strain developed in bending another straight beam of the same thickness into the 

mold profile at some position below the meniscus, and then subtracting the two values. 

 ( ) ( ) ( )
( ) ( )
( ) ( )

h h m
xx

h m h h h m

r z r zy y
z y

r z r z r z r z
ε

−
= − =  (5.111) 

Here, y  is the distance from the surface of the shell, applying the result of the earlier 

development that the neutral axis lies on the shell surface.  If anywhere the mold profile becomes 
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perfectly flat, i.e., a parallel mold, then the infinite radius removes the second term from the 

subtraction.  The result of this subtraction is the more important quantity when considering the 

behavior of the solidifying shell in a funnel mold, and is the strain developed in bending a beam 

originally in the shape of the mold at the meniscus into the shape of the mold at some position 

lower in the mold, as illustrated in Figure 5.26. 

 

Figure 5.26. Logic of “Developing” Bending Strain Model 
 

 To evaluate the accuracy of the bending model, including the assumption of the neutral 

bending axis lying on the surface of the shell, the predictions of Equation (5.110) are compared 

with the results of the realistic, elastic-viscoplastic two-dimensional finite element models 

discussed earlier.  Figures 5.27 and 5.28 show the strain decomposition of the simulation results 

of the Mold A geometry presented in Chapter 2, through the thickness at different points along 

the wide face centerline and in the center of the inner curve region.  The total strain from the 

inner flat region is subtracted from the total strain in the inner curve region to isolate the 

“bending strain.”  Figure 5.28 clearly shows that this bending strain increases linearly with 

distance below the shell surface.  This bending strain at the surface is slightly compressive, but 

close to the value of zero that corresponds to the neutral bending axis lying on the surface as 

assumed in the analytical model above.  Figure 5.29 shows that the analytical model matches the 

bending strains on the solidification front, defined as 75% solid, in the inside curve region for the 

A-type mold with two different funnel widths.  The fact that the ferrostatic pressure keeps the 

shell in relatively good contact with the mold is one reason that the simple analytical model 

matches so well with the numerical predictions.  The mold forces the inelastic strain to develop 

in the shell to cause the total strain predicted by the bending model.  This model clearly is a 

powerful tool for characterizing the bending imparted in the shell by different funnel geometries.  

mz z

− =
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It is particularly useful because hot tear cracks depend more on strain than on stress, and is 

discussed in more detail in the next section. 
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Figure 5.27. Strain Decomposition in Center of Inner Flat Region 

 

5.8. Longitudinal Facial Cracking Potential 

 Longitudinal facial cracking (LFC) is an important consideration in designing the shape 

of funnel molds for continuous casting thin slabs.  The solidifying steel is well-known to have 

very low ductility, and so is subject to hot-tear crack formation when subjected to small strains.  
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Navigating through a funnel mold naturally subjects the shell to transverse tensile strains, 

causing LFCs if they are too high.  Longitudinal cracks have been observed to form at various 

locations around the perimeter of the shell in both conventional and funnel continuous casting 

molds, as summarized in Figure 5.30. 
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Figure 5.28. Strain Decomposition in Center of Inner Curve Region 
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Mode Symbol Location Notes 
I ◊ Inside Curve Funnel only; depression-type; excessive bending 
II ○ Outside Curve Funnel only; depression-type; excessive NF taper 
III |⌂| No Preference Jagged, short cracks; heat transfer related 
IV □ Near SEN Fluid-flow related 
V ∆ Off-Corner WF Inadequate NF taper 

 
Figure 5.30. Longitudinal Facial Crack Locations and Mechanisms 

 

 Apart from the pioneering work by Brimacombe and colleagues [3,14], little work has 

been done to investigate longitudinal facial cracks.  Cracks form from a combination of tensile 

strain and loss of metallurgical ductility.  Tensile strains may arise from mechanical effects (such 

as bending and bulging, which are the main cause of transverse cracks), or from combined 
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thermo-mechanical effects (which are the main cause of longitudinal cracks, such as hot tears).  

Hot tears occur from excessive tensile strain across the roots of the dendrites at the solidification 

front; microsegregation effects depress the local solidus temperature, resulting in thin liquid 

films between dendrites that act as strain concentrators.  Hot tear cracks can propagate through 

the shell immediately, or remain a subsurface crack that grows with the solidification front and 

reduces the load-carrying capability of the shell until rupture.  The weakened shell may rupture 

at or below mold exit due to overload from the ferrostatic pressure.  The effective shell thickness 

is measured from the strand surface to the root of the crack, and previous calculations [23] have 

shown that the critical shell thickness at mold exit is just 3 mm.  Breakouts occur where cracks 

penetrate through to the surface because the local shell thickness falls below this limit.  Local 

shell thickness can be reduced from gap formation, either by mechanical forces lifting the shell 

from the mold surface or from fluid-flow related effects such as variations in slag layer thickness 

(either too thick or too thin). 

 The different types of longitudinal cracking in the mold observed in plants share some 

common causes, but also exhibit unique mechanisms, which depend on where the cracks occur 

I. In the inner-curve region, the funnel mold imparts a mechanical bending effect in the 

solidifying shell, which causes extra tensile strains on the solidification front and extra 

compressive strains on the shell surface.  The extra strain on the solidification front makes 

subsurface hot tears more likely to form in this region.  These cracks are often found in the 

root of a depression, such as shown in Figure 5.31, which suggests a contribution from 

another mechanism as well, such as buckling or necking of the shell.  These cracks are 

initiated by problems at the meniscus.  Funnel design impacts this mechanism because the 

additional mechanical bending strains in the shell depend on the funnel shape.   

II. In the outer-curve region, the bending effect of the funnel has the reverse effect, reducing 

the natural tensile strains on the solidification front.  However, longitudinal cracks both 

with and without depressions have been frequently observed in this region.  Excessive 

narrow face taper, combined with frictional effects in the inside flat and inside curve 

regions, may push on the shell, causing it to lift off of the mold face, leading to a gap, as 

well as buckling.  Funnel design impacts this mechanism because the changing shape of the 

funnel with distance down the mold may push the shell outward, causing a detrimental gap 
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to form, if the funnel perimeter decreases faster than shell shrinkage from cooling, inelastic 

strain, and narrow-face taper can accommodate. 

III. Non-uniform heat transfer around the strand perimeter can lead to cracks along grain 

boundaries as a result of locally reduced heat transfer causing larger, more brittle grains.  

All continuous casting mold shapes are subject to this type of cracking, which can be 

initiated by mold level fluctuations, variations in slag rim thickness, fingers of mold flux 

caught in the shell-mold gap, and other problems at the meniscus which produce local 

nonuniformities that enhance local strain concentration.  Funnel design impacts this 

mechanism through its important effect on the flow pattern in the mold, especially in the 

funnel transition region (curved regions), which is susceptible to the largest level 

fluctuations.   

IV. Fluid flow around the SEN is particularly important in funnel molds because of the 

relatively short distances between the nozzle and mold surface.  Flow patterns in the mold 

can disrupt the infiltration of liquid flux feeding at the meniscus, cause shell thickness 

variations, excessive slag layer solidification, local increase of inclusions, and mold level 

fluctuations, especially near the SEN.  Each of these can cause LFCs similar to Types I and 

III.  Funnel design impacts this mechanism by affecting the space between the SEN and the 

mold.   

V. Longitudinal cracks can form on the wide face of the shell, just off of the corner with the 

narrow face.  These cracks are caused by two-dimensional effects, related to narrowface 

taper and mechanical shearing.  With insufficient NF taper, ferrostatic pressure maintains 

shell contact with the central narrow face, causing the shell to rotate around the rigid 

corner, creating off-corner gaps, and related heat transfer drop and longitudinal depressions 

and cracks.  With excessive NF taper, the shell can buckle near the corner.  In addition, the 

accompanying excessive-cooling of the corner together with later reheating and subsurface 

cooling and shrinkage can lead to subsurface tensile strain and internal hot tears near the 

corner.  All of these effects lead to off-corner longitudinal cracks.  Funnel design impacts 

this mechanism in the same way as Type II cracks. 

The cracking issues faced by a particular funnel design may be one or more of the above list, so 

funnel design and operation must simultaneously account for all of the mechanisms. Indeed, the 
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plant experience at Corus IJmuiden in Figure 5.32 suggests that all five types of longitudinal 

crack are likely present with A-type funnel design, though Type I clearly dominates the problem. 
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 Design of the funnel shape to avoid longitudinal cracking requires careful optimization to 

avoid both excessive bending effects and problems with fluid flow, so SEN design provides 

many parameters to adjust in the design process. Other design variables, including narrow face 

taper, flow-pattern control (nozzle shape, etc), and sub-mold support (e.g. foot roll alignment) 

are all equally or more important than funnel design in controlling longitudinal cracks.  Funnel 

designs should be evaluated together with all variables which define the entire mold system, 

according to what produces the lowest cracking tendency in the solidifying steel and the highest 

product quality.  Thus, the best funnel design depends on the dominant crack mechanism and can 

vary between different casting operations.   

 Hot tears are casting defects that occur when the liquid is unable to flow into the roots of 

the dendrites while the mushy zone is under tension, as shown in Figure 5.33, and are typically 

found at grain boundaries [6].   Won et al. [39] proposed the following empirical criterion to 

predict the onset of hot tearing: 
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where critε  is the critical strain (here in m/m, not percent), ε  is the average inelastic strain rate 

over the brittle temperature zone (here in m/m/s), and BTΔ  is the width of the brittle temperature 

zone (here in ºC).  The brittle temperature zone is defined in [39] as the range of the mushy zone 

between 90% and 99% solid: 

 ( ) ( )0.99 0.90B s sT T f T fΔ = = − =  (5.113)   

The average inelastic strain rate was calculated in this work using a simple finite difference 

approximation: 
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 where the involved inelastic strains and times are found by interpolating through the results first 

for temperatures at the respective fraction solids, which are then used to interpolate for the other 

data.  Furthermore, the maximum principal component of the inelastic strain rate is used in the 

critical strain calculation; this was always the circumferential component in the two-dimensional 

simulations. 

 To actually evaluate the potential for hot tearing, the critical strain is compared against 

the “damage strain,” which is the inelastic strain accumulated over the brittle temperature zone.  

For monotonic thermal histories, the damage strain is simply: 

 ( ) ( )0.99 0.90ie ie
dmg s sf fε ε ε= = − =  (5.115) 

Figure 5.33. Hot Tearing is Caused by Tensile Stress on the Mushy Zone 

Liquid Solid 
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In the case of more complicated thermal histories, this needs to be generalized to include every 

pass in and out of the brittle temperature zone, which did not occur in the funnel simulations, but 

has been observed in other thermomechanical models of the solidifying shell [10].  The 

comparison of the damage strain to the critical strain is facilitated with the definition of a 

“damage index.”  The damage index D  is a simple ratio which expresses the relative danger of 

crack formation: 

 dmg

crit

D
ε
ε

=  (5.116) 

Crack formation is imminent when the damage index exceeds unity.  This single value simplifies 

comparing different funnel geometries for their tendency to induce cracking, as discussed next. 

 Initial post-processing of the thermomechanical simulations discussed above for hot-

tearing potential showed that the calculation is extremely sensitive to mesh spacing and time step 

size.  Instead of trying to perform this calculation in two dimensions, a one-dimensional 

simulation was performed with boundary conditions specified according to the analytical 

bending model to include the bending effect.  With mesh sizes as small as 0.03 mm, the 

predictions of the average strain rate were still extraordinarily noisy, and so the carbon content 

was increased to 1% wt. C, with all other alloying components identical to the other cases.  This 

significantly reduced the noise in the damage calculation, but the high-carbon steel is much more 

crack sensitive than the grade initially considered.  Thus, the estimates given below should 

predict more cracks than observed, but nevertheless the effect of geometry can still be 

investigated effectively. 

 The geometries considered for this small study include a parallel mold, (also representing 

regions away from funnels and corners); the nominal A-type mold presented in Chapter 2; the A-

type mold with a 200 mm wider outer funnel width, and the A-type mold with a 100 mm longer 

funnel.  Figure 5.34 shows that the damage strain in the inside curve region is decreased by using 

a wider funnel, or in particular, a larger horizontal funnel radius.  Increasing the funnel length 

increases the damage strain deeper in the shell.  Similar results are observed in the average 

inelastic strain rate over the brittle temperature zone, as shown in Figure 5.35.  Evaluation of the 

Won critical strain rate with these values shows in Figure 5.36 that the funnel decreases the 

critical strain in the subsurface regions, and the same trends as above are observed.  The critical 

strain is decreased by a lesser amount with the wider funnel (larger horizontal radius), and the 
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longer funnel results in lower critical strain deeper in the shell.  Combining these results together 

via the damage index, Figure 5.37 shows that although the damage index is always far below the 

“danger zone” of unity, the effect of the funnel geometry is to make hot tearing much more likely 

in the inner curve region.  If some additional detrimental effect, such as a level fluctuation,  

superimposed additional strains that would tend to cause crack formation, then the results here 

suggest that funnel molds increase the likelihood of the crack actually opening and a breakout 

forming.  This can be mitigated by using funnels with larger horizontal radii and shorter funnel 

lengths. 
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Figure 5.34. Accumulated Damage Strain Figure 5.35. Average Inelastic Strain Rate in BTZ 
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5.9. Conclusions 

 Mathematical models have been employed to study the effect of funnel geometry on the 

mechanical behavior of the solidifying shell in continuous casting funnel molds.  After verifying 

a two-dimensional finite-element model with an analytical solution of solidification stresses, the 

model was used to simulate the mechanical behavior of the solidifying shell using the 

temperature fields calculated in Chapter 4.  The funnel geometry is responsible for inducing 

bending behavior in the funnel transition region, which, when combined with the normal 

solidification behavior, tends to cause hot tearing in the inside curve region.  A parametric study 

of the funnel geometry revealed that this bending effect is reduced as the funnel gets shallower 

and wider, and a simple analytical model identified that the severity of the bending can be 

accurately characterized by the horizontal radius of the funnel.  During normal operation, the 

funnel will not cause hot tear cracks to form, but as a result of the bending effect, the funnel is 

less likely to survive an event that would cause the hot tear to open. 
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CHAPTER 6 
 

CONCLUSIONS AND FUTURE WORK 
 

6.1. Conclusions 

 A two-dimensional thermomechanical numerical model of the solidifying shell and a 

three-dimensional model of the mold in continuous casting of steel in funnel molds has been 

developed to study the effect of funnel geometry on the behavior of the shell.  Specific 

conclusions arising from the mold thermal model, shell solidification heat transfer model, and 

shell mechanical model are given in the Conclusions to Chapters 3,4, and 5 respectively.   

 The thermal aspects of the model were calibrated with a large database of plant 

measurements from the Corus Direct Sheet Plant in IJmuiden, The Netherlands, most 

importantly resulting in an interfacial heat flux profile between the mold and shell.  The 

calibration exercise also showed the variation of mold and shell thermal behavior with 

decreasing mold thickness, i.e., mold wear.  The geometric effect of the funnel on the thermal 

behavior of the mold was found to be very small, and increases with decreasing horizontal funnel 

radius.  Variations in mold surface temperature caused by geometric features such as water slot 

spacing around bolts and gap conduction variations are likely to be more important for 

detrimental shell behavior, i.e., cracks, than the geometric effect of the funnel itself. 

 Although the constitutive response of the solidifying steel is dependent upon temperature, 

the previously-mentioned thermal effect is indeed small on the resulting mechanical response of 

the shell.  The major effect of the funnel geometry on the mechanical response of the shell is to 

induce bending, i.e., tension on the surface and compression on the solidification front or vice-

versa, which is proportional to the horizontal funnel radius.  In fact, the bending strain can be 

accurately quantified using a simple relationship derived using elementary solid mechanics.  This 

bending effect was found to make hot-tear cracks that originate beneath the surface more likely 

in the “inside curve” region of the funnel, and less likely in the “outside curve” region of the 

funnel.  This finding corresponds well with one family of longitudinal face cracks that have been 

observed in practice.  The parametric studies performed in this work have also identified that the 

change in shell perimeter length due to the funnel must be accounted for when designing narrow 

face taper practices. 
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 Several findings in this work indicate that the optimum funnel shape is to maximize the 

funnel radius of curvature, which means at best using a parallel-walled mold with no funnel at 

all.  Barring this, the optimum funnel shape has no “inner flat” region, an outer funnel width as 

wide as possible, and a crown as shallow as possible, as shown in Figure 6.1.  The outer funnel 

width is specified by consumer demand for minimum product width, while the crown size must 

be balanced with the SEN size to avoid fluid-flow related defects.  This opens a new field of 

research in the design of funnel molds and SENs. 

 

Figure 6.1. Recommended Funnel Geometry 
 

6.2. Future Work 

 Several points of future work have been indicated throughout this work.  The model 

developed here, as it stands, is already a very useful prediction tool, and should be used to 

investigate the behavior of the solidifying shell at various casting speeds, steel grades, funnel 

shapes, mold tapers, and other casting parameters such as interfacial friction coefficient and heat 

flux profile.  One ultimate and practical goal is to recommend safe operating practices for higher 

casting speeds.   

 The numerical model developed here could be improved in several ways.  One issue of 

cracking that is unique to funnel molds is the “bend” in the funnel at the end of the funnel length; 

this can induce transverse cracking and requires three-dimensional models to study properly.  

Other important multi-physics effects include the coupled effects of fluid flow in the liquid pool, 

and the thermal distortion of the mold on the shell heat transfer and deformation.  Other future 

improvements include developing a cooling-rate-dependent phase fraction model, anisotropic 

material behavior, finite deformation, and better cracking criteria.   

 

Outer Funnel Width: Maximize 

Inner Funnel Width: Minimize 

Crown: Minimize


